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Major Professor: James R. Wilson.

;‘3 A solution is offered to the general problem of optimal selection of
:‘ control variates. Solutioné are offered for two different cases of the general
. problem: (a) when the covariance matrix of the controls is unknown, and (b)
?_E: when the covariance matrix of the controls is known and is incorporated
:;:'{ into point and confidence region estimators. For the second case a new
1"‘- estimator is introduced. Under the assumption that the responses and the
:z'; controls are jointly normal, the unbiasness of this new estimator is
’ ‘:.’ established , and its dispersion matrix is derived. A selection algorithm is
) ‘ implemented which locates the optimal subset of controls. The algorithm is

based on criteria derived for the two cases listed above. A promising new
Aifgd class of controls is introduced which are called ‘‘routing variables'. The
asymptotic distribution of these controls is derived as well as their
asymptotic mean and variance. Finally, the performance of the selection
algorithm is investigated and the new estimator is contrasted with the

classical estimator.




BIBLIOGRAPHY

: Aitkin, M. A., “Simultaneous Inference and the Choice of Variable Subsets in
"o Multiple Regression,’ Technometrics, vol. 16, pp. 221-227, 1974.

Akaike, H., “Information Theory and an Extension of the Maximum
Likelihood Principle,” 2nd International Symposium on Information
Theory, pp. 267-281, Akademiai Kiado, Budapest, 1973.

Allen, D. M., “Mean Square Error of Prediction as a Criterion for Selecting
Variables,” Technometrics, vol. 13, pp. 469-475, 1971.

Anderson, T. W., An Introduction to Multivariate Statistical Analysis, John
Wiley, New York, New York, 1984.

, Arvensen, J. N., “Jackknifing U-Statistics,” Annals of Mathematical
b Statistics, vol. 40, pp. 2076-2100, 1969.

*

‘

Bauer, Kenneth W., A Monte Carlo Study of Dimensionality Assessment and
Factor Interpretation in Principal Components Analysis, Unpublished
Masters Thesis, Air Force Institute of Technology, 1981.

Beaton, A. E., The Use of Special Matrix Operators in Statistical Calculus,
Research Bulletin RB-64-51, Educational Testing Service, Princeton,
b New Jersey, 1964.

Box, George E., William G. Hunter, and J. Stuart, Statistics for
Erperimenters, John Wiley and Sons, New York, New York, 1978.

Cheng, R. C. H., ‘“‘Analysis of Simulation Experiments under Normality
Assumptions,” Journal of the Operational Research Society, vol. 29, pp.
493-497, 1978.

Chvatal, Vasek, Linear Programming, W.H. Freeman and Company, New
York, New York, 1980.

Crane, M. and A. J. Lemoine, “An Introduction to the Regenerative Method
for Simulation Analysis,” in Lecture Notes in Control and Information
Sctences, Springer-Verlag, Berlin, Germany, 1977.

Draper, N. and H. Smith, Applied Regression Analysis, Second Edition, John
Wiley and Sons, New York, New York, 1981.

Eakle, J. D., Regenerative Analysis Using Internal Controls, Unpublished
Ph.D. Dissertation, Mechanical Engineering Department, University of
Texas, Austin, Texas, 1982.

Flury, Bernard and Hans Reidwyl, “T ** 2 Tests and the Linear Two-Group
Discriminant Function, and their Computation by Linear Regression,"”
The American Statistician, vol. 39, pp. 20-25, February, 1985.

P O PR TR N PR PR LR R R R RN
MK A A



4 N
hO)
. 125
u:g‘;
L)
',; Furnival, G. M. and R. W. Wilson, ‘‘Regression by Leaps and Bounds,”
:' - Technometrics, no. 18, pp. 499-511, 1974.
-’ Furnival, George M., “All Possible Regressions with Less Computation,”
\ Technometrics, vol. 13, pp. 403-408, May 1971.
?.k' Gabriel, K. R., “Simultaneous Test Procedures - Some Theory of Multiple
o Comparisons,” Annals of Mathematical Statistics, vol. 40, pp. 224-250,
N 1969.
o
""‘) Hocking, R. R., “The Analysis and Selection of Variables in Linear
. X Regression,” Biometrics, vol. 32, pp. 1-49, March, 1978.
{: Hocking, R. R., “Developments in Linear Regression Methodology: 1959-
- 1982, Technometrics, vol. 25, pp. 219-230, August, 1983.
.-r: Hoerl, A. E. and R. W. Kennard, ‘Ridge Regression: Biased estin.1tion for
non-orthogonal problems,' Technometrics, vol. 12, pp. 55-68, 19%0.
o Hogg, R. V. and A. T. Craig, Introduction to Mathematical Statistics,
iy Macmillan Company, London, England, 1970.
-~ .
, :: Iglehart, D. L., “The Rengerative Method for Simulation Analysis,” in
o Current Trends in Programming Methodology, Vol III , ed. K. M.
> Chandy and R. Yeh , Prentice Hall, Englewood Clifis, New Jersey, 1978.
m Iglehart, D. L. and P. A. W. Lewis, ‘“Regenerative Simulation with Internal
o~ Controls,” Journal of the Association of Computing Machinery, vol. 26,
‘ no. 2, pp. 271-282, 1979.
::-: Johnson, R. A. and D. W. Wichern, Applied Multivariate Analysis, Prentice
1 Hall, Inc. , Englewood Cliffs, New Jersey, 1982.
t Jollife, I. T., “Disgarding Variables in Principal Components Analysis: Part 1
, Artifical Data,” Applied Statistics, vol. 21, pp. 160-173, 1972.
:',:f Kennedy, W. J. and J. E. Gentle, Statistical Computing, Marcel Dekker, Inc.,
::Z New York, New York, 1980.
J Kenney, J. F. and E. S. Keeping, Mathematics of Statistics Part II, Van
- Nostrand Co. Inc., New York, New York, 1951.
D
‘f,* Kleijnen, J. P. C., Statistical Techniques in Simulation, Part 1 and 2, Marcel
i .;: Deckker, New York, New York, 1975.
S

: Lavenberg, S. S., T. L. Moeller, and P. D. Welch, Statistical Results on
Rl Multiple Control Variables with Application to Variance Reduction in
Queueing Network Simulation, IBM Research Report RC-7423,
Yorktown Heights, New York, 1978.

.5‘_': Lavenberg, S. S., T. L. Moeller, and C. H. Sauer, ‘‘Concomitant Control
s Variables Applied to the Regenerative Simulation of Queueing
- Systems,'’ Operations Research, vol. 27, no. 1, pp. 134-160, 1979.

Lavenberg, S. S. and P. D. Welch, “A Perpective on the Use of Control

T Variables to Increase the Efficiency of Monte Carlo Simulations,”
L Management Sciences, vol. 27, pp. 322-334, March 1981.

,"::: Lavenberg, S. S., T. L. Moeller, and P. D. Welch, ‘Statistical Results on
) Control Variables with Application to Queueing Network Simulation,”
v Operations Research, vol. 30, pp. 182-202, Jan-Feb 1982.

S

b

N2

o

@

AR )

Yy

S S

-I" .0 "

.‘:."\J‘ .-_‘ ...... NN "_ .'r St
.

RN
!
v,

*\J‘ h"\ ‘.r;‘

\-\

N
" o

N . - - - “
LR I RS LER ~ ; At -.,.',.-* -F‘ -

v " ) Sou! » 4 W a
M) 8,89, N " -



NP b
5';#5-5;“ i

‘-v b

o
)
v

e N

]

PR A

e
;';';’.-'.-

126

Lavenberg, Stephen S., T. L. Moeller, and P. D. Welch, “‘Statistical Results
on Control Variables with Applications to Queueing Network
Simulation,’” Operation Research, vol. 30, pp. 182-202.

Lindley, D. V., “The Choice of Variables in Multiple Regression,” Journal of
the Royal Statistical Society, vol. B30, pp. 31-53, 1968.

Mallows, C. L., “Some Comments on C sub p,” Technometrics, vol. 15, pp.
661-673, 1973.

Mantel, N., “Why Stepdown Procedures in Variable Selection,”
Technometrics, vol. 12, pp. 621-625, 1970.

McCabe, George P., “Evaluation of Regression Coefficient Estimates Using
alpha-acceptabilty,” Technometrics, vol. 20, pp. 131-139, May 1978.

McCabe, George P., “Principal Variables,” Technometrics, vol. 26, pp. 137-
144, May, 1984.

McKay, R. J., “Variable Selection in Multivariate Regression: An Application
of Simultaneous Test Procedures,” Journal of the Royal Statistical
Soctety, vol. B 39, pp. 371-380, 1977.

Miller, Rupert G., “The jackknife - a review,” Biometrika, vol. 61, pp. 1-15,
1974. .

Muirhead, R. J., Aspects of Multivariate Statistical Theory, John Wiley and
Sons, New York, New York, 1982.

Neter, J., W. Wasserman, and M. H. Knuter, Applied Linear Regression
Models, Richard D. Erwin, Inc., Homewood, Illinois, 1983.

Neuts, Marcel F., Probability, Allyn and Bacon, Inc., Boston, Mass., 1973.

Nova, A. M. Porta, A Generalized Approach to Variance Reduction in
Discrete-event Simulation using Control Variables, Unpublished Ph.D.

Dissertation, Department of Mechanical Engineering, The University of
Texas, Austin, Texas, 1985.

Nozari, A., S. F. Arnold, and C. D. Pegden, ‘“Control Variates for

Multipopulation Experiments,” IIE Transactions, vol. 16, pp. 159-169,
June, 1984.

Pritsker, A. Alan B., Introduction to Simulation and SLAM, Halsted Press,
New York, New York, 1986.

Rao, C. R., “Least Squares Theory using an Estimated Dispersion Matrix and
its Application to Measurement of Signals,” Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Probabilty, vol. I,
pp- 355-372, University of California Press, Berkeley, California, 1987.

Rubinstein, Reuven Y. and Ruth Marcus, “Efficiency of Multivariate Control

Variates in Monte Carlo Simulation,” Operations Research, vol. 33, pp.
661-677, May-June 1985.

Schatzoff, M., S. Fienberg, and R. Tsao, ‘“Efficient Calculations of All-
possible Regressions,” Technometrics, vol. 10, pp. 768-779, 1968.

Schwarz, G., ‘‘Estimating the Dimension of a Model,"”” Annals of Statistics,
vol. 6, pp. 461-464, 1978.




000 )
PR

.
L

Ty

b s

l.’-.{- LY s

l}‘.

_ Jo e Sl o

........

127

Seber, G. A. F., in Linear Regression Analysis, John Wiley and Sons, New
York, New York, 1977.

Seber, G. A. F., Multivariate Observations, John Wiley and Sons, New York,
New York, 1984.

Siotani, M., T. Hayakawa, and Y. Fujikoshi, Modern Multivariate Statistical

Analysis: A Graduate Course and Handbook, American Sciences Press,
Columbus, Ohio, 1985.

Solberg, James J., CAN-Q User's Manual, School of Industrial Engineering,
Purdue University West Lafayette, Indiana, 1980.

Thompson, Mary L., “Selection of Variables in Multiple Regression: A Review

and Evaluation,” International Statistical Review, vol. 46, pp. 1-19,
1978.

Venkatraman, Sekhar, Application of the Control Variate Technique to
multiple Simulation Output Analysis, Department of Mechanical
Engineering, The University of Texas, Austin, Texas, 1983.

Venkatraman, Sekhar and James R. Wilson, ‘‘The Efficiency of Control

Variates in Multiresponse Simulation,” O.R. Letters, vol. 5, no. 1, pp.
37-42, 1986.

Webster, J. T., R. F. Gunst, and R. L. Mason, ‘‘Latent Root Regression
Analysis,” Technometrics, vol. 16, pp. 513-522, 1974.

Welch, Peter D., ‘“The Statistical Analysis of Simulation Results,” in

Computer Preformance Modeling Handbook, Academic Press Inc., New
York, New York, 1983.

Wilson, J. R. and A. A. B. Pritsker, ‘“Variance Reduction in Queueing
Simulation wusing Generalized Concomitant Variables,” Journal of
Statistical Computation and Simulation, vol. 19, pp. 129-153, 1984a.

Wilson, J. R. and A. A. B. Pritsker, “Experimental Evaluation of Variance
Reduction Techniques for Queueing Simulation using Generalized

Concominant Variables,” Management Science, vol. 30, pp. 1459-1472,
Dec 1984b.

Wilson, James R., Variance Reduction Techiques for the Simulation of
Queueing Networks, Technical Report , Mechanical Engineering
Department, University of Texas, Austin, Texas, 1982.

Wilson, James R., ‘“Variance Reduction Techniques for Digital Simulation,”
American Journal of Mathematical and Management Sciences, vol. 1,
pp. 227-312, 1984

--------------- S R T T TR P S
> N -n".-.-:- _J(',\‘-f,\!"u"n

e, T
\J‘.’d",\w‘,‘ f ¥(‘,\_n \-" \
e N BN N i M)

Tttt

Oy

)

U X

t




-‘:"- x

g 4"-;5,

%Y g
.

A
l...l‘l‘l
vt N ) )

-
v f

A
>y

, ‘a:'f ‘

v
€ 4
«'s'e

[P0
i)

, .
v
.
P
L

~
Il

e
LA
St

LY
»
, P
.
AL 8 e

L.'
>

[
L) )

2o e e

K

S
P
A

‘t . ~ .'l “‘
LA

_<
R .
LAl

[ 3

(]
4

'-.l
e

v
r."_ PACATNEN

2

L)

RO

l.‘rl
[

Pt S e fati liat folind b Tw 0 ha® o . . W1 A et dab das . ¥ gae fan Aoy

PURDUE UNIVERSITY

Graduate School

This is to certify that the thesis prepared

By Kenneth W. Bauer, Jr.

Entitled
Control Variate Selection for Multiresponse Simulation

Complies with University regulations and meets the standards of the Graduate School for
originality and quality

For the degree of Doctor of Philosophy

Signed by the final examining committee:

QM £
M/ L Lot

/ c,}@é/v—o‘fﬂ C

)@Mmm

Approved by the head of sch

_April 28 19 87

— is
This thesis £= is not to be regarded as confidential

Jm Y7

Ma] T rofessor

Grad. School
Form No. 9
Revised 9-85




-
By i
)
W .

-
. ‘l
AN

‘ow
]
.

8

-
e
-

NN
S

o
PR

T
1§

X, v 1,4
Ll

LR ¥ 3 . 3
3 r vy

PAC R as T U
1_!_1‘..-‘5

M

SRR

LA

To Cindy

Love is the answer to all questions.

-- St. Paul --

Little Darling

Its been a long, cold lonely winter
Little Darling

It seems like years since its been here
Here comes the sun

Here comes the sun

And I say

Its alright

-- George Harrison --

To Scott and Steve, also

Elin magic and Cowboy dust,
saviors two from childhood’s end.

bl S Sl Sof sk Bl 2




RN

iii

ACKNOWLEDGEMENTS

I acknowledge the good Lord, who with frightening precision, gave me
the requisite intelligence and creativity to accomplish this dissertation. The
marvelous clay of God, we mold ourselves. [ thank the United States Air
Force for sponsoring my study here at Purdue. I greatly appreciate living in a

country where even a former janitor can aspire to and win a doctorate.

I would like to thank my advisor, Dr. James R. Wilson, for his critical
eye and high standards. I am proud to have been his student. I
acknowledge the help of my committee: Dr. George McCabe, Dr. Arnold

Sweet, and Dr. Joseph Talavage, Full Professors in the finest tradition.

I acknowledge Sekhar Venkatraman, a friend and colleague. I give
special thanks to Moses Sudit for helping me in the formatting of this
document. I am honored to have made such a fine friend. Finally, I would

acknowledge Dr. Leon Gleser: the toughest, fairest, most unforgettable

personality of my college years.




N

",

s
.
o
.

'y Ao
v B

"
]
-

}ha'a’.-".-?h' .

o

-
~ -
L RE RS

»
F

- -
"
Al

0 “‘{‘c.,: 2 j‘rt

o1 @
-

aVig ¥ AW, W

P)
LA 'L‘A'!‘ll.' " ULl

TABLE OF CONTENTS

Page
LIST OF TABLES ...t orticiiiiietetiiiiiieeereeeenrinesesessssnnsneseeesssesnessssessenes vi
LIST OF FIGURES .....iiitiiiiiitititniieeeeeervrenneeseerrresseeseeeessssiseesssssranne vii
ABSTRAGQGT ...ttt reecrtttstaere s e eerttaaeeesesetssassseesesssssnnasssssssssaes viii
CHAPTER 1 INTRODUCTION ...oooiiiitiiiiiiiiiititiceee e eeeevavi e 1
1.1 Research ODbjJectives ...ccoviiiiiiiiiiiiiiniiiienieieccieiee e e e e 2
1.2 Organization of the Research .....cccciiiiiiiiiviiiiiiiiiec e, 3
CHAPTER 2 LITERATURE REVIEW ...t 4
2.1 Univariate Simulation Response with a Single Control ....................... 4
2.2 Univariate Simulation Response with Multiple Controls ................... 11
2.2.1 Output Analysis Using Independent Replications
or Batch Means ....ccouiiiiiiiiiiiiiiiicee e 11
2.2.2 Output Analysis Using the Regenerative Methods ..........cccee... 21
2.2.3 Analysis Techniques for Nonnormal Responses ........ccccceeeeeeeenn... 23
2.2.4 Experimental Results .......cccccovviiimimiiiiiiimimicieciccceeeceeeeeeeeeeeeeees 25
2.3 Univariate Simulation Metamodel with Multiple
L0707 1174 Lo ) U T USRS 28
2.4 Multiresponse Simulation with Multiple Controls ......ccccccevveeveeieennnn. 31
2.5 Multiresponse Simulation Metamodel with Multiple Controls ........... 41
2.6 Selection of Regression Models ........cccurvivvrememirivmiiciiiiieeenieeeieeeeeeeeeeen 43
2.8.1 Review of Control Variate Selection Techniques .....ccccccuuneennees 44
2.6.2 Review of Variable Selection Techniques .....cccocevveeeieeieiiineeennnnnnn. 44
2.6.2.1 Multiple Linear Regression Model ........ccccoeeiiiveeriennrierienennnnnn. 45
2.6.2.2 Multivariate Linear Regression Model ........c.cceevvevervrivrrennnnnn 63
CHAPTER 3 CONTROL VARIATE SELECTION CRITERIA ....... 69
3.1 A Selection Criterion When the Covariance Matrix of the
Controls is Estimated ....c..ccccoeiiiiiiiiiioiiiiiiicccccrerrtee e 69
3.1.1 Univariate ReSPONSEe ....cccevevuiieriereiniiiriiieiriniieeerieeertieeeeenneneseannns 70
3.1.2 Multivariate ReSpOnse ....cccocevvveienoiiiiiiiiieriieeireinecervneerein s anens 72
3.2 A Selection Criterion When the Covariance Matrix of the
Controls is KNown .......cooiiiiiiiiiiiiiiniiiiiiiiccinninecnere e 74
3.2.1 The Estimator Y () .ccerrcrciiiieiriiieiieneiececsercnnee e seanne e s e 75
3.2.2 A Selection Criterion .....ccccccciveeeereriiiiiiiierireerererieereseeeseiiieeeesennnns 82
¢ “::": v ""\"‘.qz"\‘_ r.“.'q. eﬁ L ‘r ‘! Y. |‘ :.‘alﬁ'! . ‘P AL T X P a7 WS




o R T P P T T T T VO T P VO O O T VO T T o
156)
i
-P‘ v
L)
3 ¥,
b ,
au
a1 Page
o CHAPTER 4« IMPLEMENTATION OF THE SELEC {'ION
& CRITERIA IN QUEUEING NETWORK SIMULATION ................. 84
b 4.1. Description of the Simulated Queueing Networks .....cccceceeeiiriiiennnnees 84
. 4.2. Layout of the Simulation Experiments ......c.cccccevvrivrinniirrenrernnennnnnneen. 91
i 4.2.1 Composition of the Metaexperiments .......ccoccevvrieereerruieecrnnrencennens 91
- 4.2.2 Selected System ReSPOMIES ...cc.ccvveiiuniiiieniiiieenernirnernseresscrernesennns 92
b 4.2.3 Selected Control Variables ....c...coveeiviieiriiiiiiiiiirieereerecereee s 92
A 4.2.4 Routing Control Variables ..........ccceeeicemmiireeeimieniimeienmnirirerecnennens 95
g 4.2.5 Selected Performance Measures ...........cccceevcereeereesnneeesecennneesenne 97
N 4.3 Optimal Subset Selection Methodology .....ccceceerriunnirrrrreeciirenvecnencennnee 99
o 4.3.1 Matrix Methods ....cccccveervereciinirivereiueeeseceeennrreessssesesnnsessssenssns 103
e 4.3.2 Generation of All Possible Regressions ......c.cccccvevviceerrnencrecccnnne 107
o 4.3.3 Multivariate Generalization of
All Possible Regressions .......ccccccceieieunnieiieiuniiiniemeceniennnenercnenenenns 111
32 CHAPTER 5§ EXPERIMENTAL RESULTS oovoeeeeeeeeeeeereereeeeesseneens 112
T 5.1 Summary of Experimental Results .....cccccccoeiiirriviiniiiiiiiiinnnenicciinennn. 112
. 5.2 Examination of the Assumptions Underlying the
K "' Application of Control Variables .....cccvveeriiniiieniieriiiiirenerecicenniceneen. 117
s CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS ....... 121
| .«z B.1 OVOIVIEW eiiieiiiieieriiereerueiteeresiserenecsssrsesraessssresssessssenssnsesesnsssonanssnennns 121
N 8.2 CoNClUSIONS .coiiiuueiireniiiniiiiraniiieneeoirnnneerereeerrenserenecsennsssassssressensesssnes 122
;‘i 8.3 Recommendations ........ccecuieceeercueieerascrinemunirnerrcesisnessssennseeseeeesseenines 122
‘ b BIBLIOGRAPHY ....cocittiiiiiiirnenneianneccssssosasssssaereonsaasssssssasesssanassssssanssssasaes 124
o APPENDICES
g Appendix 1: Derivation of Equation (3.2.1.10) .cocvrrieeiicrriiiirvnniiiienccncnenes 128
oy Appendix 2: Derivation of Equation {3.2.1.15) .ccivrrrrrmeenriiininivnecsiannencecnns 137
b Appendix 3: Derivation of Equation (3.2.1.17) .cocvveriieririemnrvreerccrenceenencens 139
o) Appendix 4: Derivation of Equation (4.2.4.1) ..ceoevrvnirriiiininrieennnnninnnnnes 141
- Appendix 5: Proof of Relation (4.2.4.2) .....cccoovivecuiirirccernnincrnsinnccnnnenns 144
hal Appendix 8: FORTRAN listings of SLAM Models ....ccceeeeiiiiirinnvennnnnnnee. 150
N Appendix 7: FORTRAN listing of the Analysis Program .....ccccccvveeeeenn. 162
)
e VITA cooicmieecmsenessesesse s enssssrassssessesssessssassasssstasensssessseassssessessesseneseses 182
ol
o
e
L
o
Y
i
X
2
2 %)
&
o
L]
K )
\J:
N .

e e . am ae b A m A R m A A At et et ettt an et tamate ettt
~ B W > . T T T T o e e S i e T Ty B T N
DOCECO0 o 3 "». X 'r*’\-""l"' \._., s s Tt e Y SR AT N I ARLSS ‘



&Y
<+

S

D

AL Dt =20 O

€

Pt
B
.0

L
[

»
¢

L

¥

F A §
oy ly

L
e

o'
ALY

[

’
h )

XA

oY
‘i

X- L IARKARA

-

i
13
.

5%
.

=

.
.
NN s

.
"v .-’.4-

LIST OF TABLES

Table Page

4.1 Parameters of Queueing Systems Used in the Experimental
Evaluation .ovciiiieiiieiiiiiniieeiiiciin ettt s e e e s s esa e e ae e 89

4.2 Mean Service Times for the Queueing Systems Used in the
Experimental Evaluation

4.3 Branching Probabilties for the Queueing Systems Used in the
Experimental Evaluation ....cccccoiiiiriii it ervne e eernensennens 90

4.4 Sequences of Regressions

5.1 Mean Responses for the Queueing Systems Used in the
Experimental EvalUation ...ccoieieriiiiiiiieiiiiciieiie st seeenetaseanesnnsannss 114

5.2 Performance of the Controlled Point and Confidence
Region Estimators for K=20 Replications of the
Selected Queueing Systems

5.3 Performance of the Controlled Point and Confidence
Region Estimators for K=40 Replications of the
Selected Queueing Systems

5.4 Performance of the Controlled Point and Confidence
Region Estimators when Multivariate Normality is
Ensured

5.5 Performance of the Controlled Point and Confidence
Region Estimators Under Normalizing Transformations
of Queueing Simulation Responses

5.6 Performance of the Controlled Point and Confidence
Region Estimators for Queueing Simulations of Different
RuUD Lengths oottt r et en e ran s 120




vii

LIST OF FIGURES

: Figure
1. Type I Network
2. Type II Network ....ccecevneennns evernne eetrreeseteseenertasentrantaaeeraanatasenntrraeresenseen 88

o 3. Regression Tree ...... ettt e s e s se s e e s e et e e e s s bbb st b b e s b e bbb ra e s 109

r

W)
‘]
‘

L
w
¢ L™ A A A Py T s A AT N AT S AN AS Lt e G A AT
sl at o o ’ w7 " S L Y, A o b
. 'i".'u'c'..’ ) .UQ !oh".o .0 ) t"‘-. c’. SRS Cp o K *"'\" 'y R TUOMINA R Ry ALY -\"a"- + ¥ ”.:"“'




L ad B8 a4 Aen o ail add Ah SR abh oid il bk and bk af

' 4 viii

ABSTRACT

-
SRt b -

Bauer, Kenneth W., Jr. Ph.D., Purdue University, May 1987.

b Control Variate Selection for Multiresponse Simulation.

i Major Professor: James R. Wilson.

- A solution is offered to the general problem of optimal selection of
5; control variates. Solutions are offered for two different cases of the general
,

& problem: (a) when the covariance matrix of the controls is unknown, and (b)
’ when the covariance matrix of the controls is known and is incorporated
into point and confidence region estimators. For the second case a new

:‘ estimator is introduced. Under the assumption that the responses and the
: controls re jointly normal, the unbiasness of this new estimator is
3-5 established , and its dispersion matrix is derived. A selection algorithm is
" implemented which locates the optimal subset of controls. The algorithm is

P based on criteria derived for the two cases listed above. A promising new
4

:' class of controls is introduced which are called ‘‘routing variables”. The

: : asymptotic distribution of these controls is derived as well as their
X asymptotic mean and variance. Finally, the performance of the selection

algorithm is investigated and the new estimator is contrasted with the

classical estimator.
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The method of control variables is one of the main variance reduction
e
:.:: techniques used in discrete event simulation. This method attempts to exploit
:::'::‘_ correlations between output responses and associated auxiliary variables with
o
: known means that can be observed during the course of a simulation run.
2O Although control variables can be external (that is, similar variables in a
':‘-'.j much simplified version of the original model which is driven by the same
J':.d
. random number streams as the original model}, our research deals only with
N::: internal or so-called concomitant controls.
o5
\"
o There are severai tactical issues that must be addressed to employ
7) control variables successfully. One such issue is efficiency. Several authors
5 -
o . «
- ‘see review of the literature) have addressed the fact that a trade-off must be
~
?.’_: recognized in the application of the control variable technique. Various loss
factors have been derived to quantify the diminishing marginal returns that
‘ﬁ
s
:_::: are experienced (on the average) when additional control variables are
-
‘\-".': included in the variance reduction scheme. This trade-off arises because the
b8
- application of control variables requires the estimation of additional control
g
Y
- coefficients. If the sample size is taken to be constant, then the variance
(\ reduction achieved by the use of additional controls can be offset by the
J Ad
' variance inflation due to the estimation of additional coefficients. Hence a
(%)
o
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selection scheme is needed to pick a good subset of the candidate controls.

The control variable selection problem is important because more often
than not a simulator trying to use control variables finds himself confronted
with multiple candidates for controls. The literature to date only offers ad
hoc methods to solve this problem. Several authors have called for research
into this problem; in particular Lavenberg, Moeller, and Welch (1982),
Rubinstein and Marcus (1985), and Venkatraman and Wilson (1986) have all
suggested methods for developing an effective control variate selection

procedure. Unfortunately there has been no follow-up work on any of these

P
LA

proposals.

1 O

-

LI
R

N A M A N

1.1 Research Objectives

SO
-l‘\'- »

O

Our primary objective is to formulate and evaluate control variate
selection criteria for multiresponse simulation experiments in which we seek
point and confidence region estimators for the mean response. We
distinguish the following cases: (a) the covariance matrix of controls is

unknown, and (b) the covariance matrix of the controls is known and is

At )7

ENLN AL

e

<

incorporated into the point and confidence region estimator. The second case

requires the introduction of a new point estimator and the the derivation of

P
l. [
v ' i

R

its mean vector and covariance matrix. We also introduce a new class of

controls that we call ‘“‘routing variables’, and we establish the asymptotic

.
PR
LY

L2 R R v

distribution of these controls so that we may exploit them not only in case
(a) but also in case (b). The experimental evaluation phase of the research

includes a comparison of the performance of the controlled estimation

procedures described in (a) and (b) above.
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; 1.2 Organization of the Research
o
a, We review both the control variable literature as well as the pertinent
*
. statistical literature which bears on variable selection in the context of linear
R~
e regression. The literature review is presented in Chapter 2. Chapter 3
N presents theoretical arguments which lead to selection criteria for both cases
N mentioned above. In Chapter 3 we also derive the properties of the new
\ ~
estimator Y (). Chapter 4 describes our experimental setup. We discuss the
. models used, the experimental layout, and the necessary matrix methods
I~
:: required to implement the selection algorithm. In Chapter 5 we summarize
(L™
e the results of our experiments. In Chapter 6 we present an overview of the
< research and propose directions for future research.
-
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i:: CHAPTER 2
R
‘.-'- LITERATURE REVIEW
N
\:
Cd
K
The first notable, comprehensive discussion of control variables (actually
Ky
". variance reduction techniques in general) is offered by Kleijnen (1974). A
A
] more rigorous, up to date survey of variance reduction techniques is found in
Wilson (1984).
2
'.;: 2.1 Univariate Simulation Response with a Single Control
% “
pre Assume Y is an estimator of uy, where uy is the mean of some response
:’_;;: of interest. Let X be a variable observed during the course of the simulation.
."’l
' We assume that X is highly correlated with the response, and further that its
'-'). mean uy is known. The variable X is the control variable.
|‘l
::'.u
::E:: Consider the “controlled estimator”
4::'0
i Y0)=Y — (X — uy) (2.1.1)
¥
o
i Note, if b is a constant
A
o E(Y (b)) = uy , (2.1.2)
L.
N




By and var(Y (b)) = var(Y) + b*var(X) — 2bcov(Y,X) . (2.1.3)

- So Y(b) is an unbiased estimator of uy. The variance of Y(b) will be smaller

than the variance of Y if

D! 2bcov(Y, X) > b var(X) . (2.1.4)
P4

A little calculus reveals that

3= cov(Y ,X) (2.1.5)

3 var(X)

- minimizes (2.1.3). Plugging (2.1.5) into (2.1.3) yields the minimum variance

-

var(Y (3)) = (1—p%y) var(Y), (2.1.6)
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where pyy is the correlation coefficient between Y and X. Following Porta

Nova (1985), we obtain an unbiased point estimator of uy by averaging the

wn s
s

controlled observations

a

Y3 =Y,-3(X; —ux) i =1, .. ,K, (2.1.7)
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to form

: 7(3) = 2 Y:(3)/K, (2.1.8)
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where K is the sample size. Since we do not know the optimal value J, we

'
‘l
) must estimate it. An intuitive estimate of J replaces the right-hand side of
~
f::- (2.1.5) with the appropriate sample quantities. This solution turns out to be
_-j: the least squares solution for J. When the assumption of joint normality
. between Y and X is made, then the least squares solution is also the
- maximum likelihood solution. We estimate 3 by
- K _ -
A i=]
‘_ J = e . , (2.1.9)
b Y (X —X)
N =]
°
T:‘ and the point estimator of uy is then
~
o
A A s K_ .
% ar(3) = SY.3)/K (2.1.10)
{ =1
-
-" We obtain an interval estimate for uy by application of regression theory.
N First we make note of what happens under the assumption of joint normality
Ej for Y and X. In this situation the conditional distribution of Y given X is also
‘ 3
normal:
- Y | X=z ~ N{uy + 3(z — ux),0?) (2.1.11)
N where
™
P 2 2 2
™

a

X3
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b op = var(Y) (2.1.13)
"
] ) We see that if X=x, there is a linear regression of Y on X. Given we know
B
B
,»-( values of the control variable X, as well as its mean, we see that the
'.}:_:» conditional mean of Y has two terms. The first term is uy, the parameter to
o be estimated. The second term is a correction due to the particular values of
:-::: the control. To get at py, we will subtract out these corrections as in
'-;:‘:'_ (2.1.7). Equation (2.1.11) shows us that each observed Y, has the form
-~ Y, =uy+8(X; —ux) +¢ 1<:¢ <K, (2.1.14)
-
A58
Ve aT
L.
\-_:
f‘ where ¢; are the residuals
o e, ~ N(0,0%) (2.1.15)
"";:::
R There are two unknown quantities in (14), so we can apply the method of
K-
o least squares to solving for uy and 3. The parameter uy is the intercept of

equation (14) and under the joint normality assumption for X and Y,

E- uy(B) ~ N(uy,0ksyy), (2.1.16)
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oy where s;, is the upper left-hand corner entry of the matrix (D'D)™! where

-

Nt 1 X2_UX
K. 1 Xy—ux
ﬁ‘

) p=| . . | (2.1.17)

e {1 Xk —Hx |

Now to form a confidence interval about ﬁy(é) we will first need an estimate
O3 of 2. Remembering that o represents that variability in Y given we have
. accounted for X, the formula for the residual mean square error given in

- regression theory makes good intuitive sense as an estimator of 062, that is

{ K A

(¥ —Y,)’
0l = F———, (2.1.18)

o
.
.

R

U l‘.l .' .l ‘I.‘f.r

o where

~ A~

o Yi3)=uyB) +3(X% —ux), 1<i<K (2.1.19)

b Now it can be shown ( Hogg and Craig (1970), pg. 337) that

= IIY(/@) — Hy
TR~ tk-n (2.1.20)
Vo Oes1

X .";'; K-2
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"2 where ty_, is a Student-t distribution with K-2 degrees of freedom. From
) regression theory s;; is given by ( Draper and Smith (1981), pg. 83 and some
o
t"‘: algebra because our X; is X; — 1y )
o
'-E:;: K

: 2

) S(X — ux)

e t=]
ol S11= " g —, (2.1.21)
Y K $(X - X)?

W =1

i -
W

.::::f where
! :"_..
L K

ry pIP.E

7 X = (2.1.22)
s K

=2

S
\ . A 100(1-a)% confidence interval is given by
S
:-_$ wy(8) itK—z(l—?)Ue V s11- (2.1.23)
7Y

U3

e

o

Y

o As mentioned in the introduction we expect to incur a loss due to the
"o

_ estimation of (. In this case where we only have a single control variable, we

[ . . . .

‘o expect that the realized variance reduction should, on the average, decrease

b

P

ey as sample size decreases. This loss is quantified via the loss factor.

o

Sad Following Lavenberg, Moeller and Welch (1982), we define the loss factor as

-j'::. the ratio of the variance of the estimator of yy when the optimal control

e

:-:: coefficient is not known to the the variance of the estimator when the
. coefficient is known. So
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_ varluy(3) _ var(P(3))
L= i ) = var(Y(3)) (2.1.24)

In the next section we give details on the derivation of the loss factor when
there are more than one control variable. The loss factor here is a special

case (Q=1) and hence from equation (2.2.32)

K—2
F === 2.1.
L P (2.1.25)

The loss factor acts as a multiplier to the minimum variance ratio (MVR)

where

_ varg}—’gﬁn
MVR = var(F) (2.1.26)

which represents the variance reduction achievable when the optimal control
coefficients are known. Multiplying the loss factor by the minimum variance
ratio allows for the loss in potential variance reduction due to the estimation

of 3. This product is the variance ratio (VR) and

VR = LF x MVR (2.1.27)

Later we will change the abbreviations to more standard Greek symbois.
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2.2 Univariate Simulation Response with Multiple Controls

The previous discussion can be extended to the case of multiple controls.
We summarize the development presented by Lavenberg and Welch (1981)
for simulation output analysis based on independent repiications, batch

means, and regenerative analysis.

2.2.1 Output Analysis Using Independent Replications or Batch

Means

During the course of making simulation runs, we observe the values of
the response of interest as well as the Q control variables. Separate
observations could occur as the result of independent replications of the
simulation model. These observations could also result frorn the use of
batching to form nearly independent observations. Let X be a @ x1 vector of
controls, i.e., X=(X,... ,XQ Y with known mean vector
#x = (i), ..., 4g) and let B ={(by,...,b5) be a 1xQ row vector of

constants, then the controlled estimator of 1y becomes

Y(B)=Y — B(X — ux) . (2.2.1)

The vector § which minimizes Var(Y(B)) is given by

ﬂ = UYxSﬁl(s (2-2.2)

where Yyx is the @ x@ covariance matrix of the controls and oy x is the 1xQ

vector of covariances between the response and the controls. See Anderson
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(1984), pg. 39, for a proof. The resulting minimum variance is

Var(Y (9) =( 1 — p¢x) var(Y), (2.2.3)

where pyy is the coefficient of multiple correlation between Y and X. The
authors next comment on the availability and choice of control variables.

They cite many application papers and distinguish between external and

concomitant controls.

The previous discussion hinged on the assumption that 7 is known. This,
of course, is not the case in practice (otherwise there would be little need to
simulate a process in the first place). We must estimate J and incorporate
the estimate into an effective statistical procedure to estimate uy. To obtain
an unbiased estimator of uy, we make K independent replications of the
model or we organize the output from one run into K batches so that means
computed from each batch are approximately independent. If X, is the

vector of controls, observed on the k** replication or batch, then we compute
P p

A sensible estimator from the entire data set would be

Y(B) = é k},’ﬁ Y, (B) . (2.2.5)
Now
var(P(B)) = % var(Y (B)) . (2.2.6)
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However, we still do not know the optimal value of B, and we must estimate

it. One estimate of 7 is

\§ = ";Yxiixl, (2-2.7)

where i\cx and (;Yx are the sample analogs of Yxx and oyx. We now
substitute J for B in (2.2.4) and (2.2.5) to produce the estimates Yk(j) and
)—’(;’) In general }7(3) is not an unbiased estimator because 3 and X are not
in general independent. A simplfying assumption is that (Y, X) are jointly
distributed as multivariate normal random variables, see Cheng (1978). This
assumption may be justified by the use of sample means as controls (as well
as the estimator Y). In this case 7(3) is an unbiased estimator of iy, and
using regression theory (discussed in greater detail later) we obtain an

estimator of var(?(j‘)) such that
¥(3)~py

(

S N S , 2.
var(P(3) k-e-1 (2.2.8)

where tx_o_; is a t-distributed random variable with K-Q-1 degrees of

freedom. Q is the number of controls. Explicitly

N A

9

var( (9)) =07 s

where fAT,2 is given by (2.2.38) and s, is described in (2.1.17). This leads to

the familiar 100(1—x)% confidence interval for uy

V(3) £ tk_g(1=0/2\/ 5117, (2.2.9)
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L W 1'he procedure used to construct the interval given in (2.2.9) is discussed in
#

i greater detail in a subsequent section.

1529

O

'\-._' -

S Since 7 is estimated by .7, one would expect that some loss in variance

o
"":: reduction would be incurred. We define the loss factor to be the ratio of the
¢ )

')’.0'0 variance of the controlled estimator when the controls are unknown (hence

2

8 must be estimated) to the variance of the controlled estimator when the
y, X controls are known. Using the notation of Venkatraman and Wilson (1986),
. we let \, denote the loss factor, we will show

R0

K-2

" \ = — (2.2.10)

S 1 2.
oo K—-Q -2
- This factor is derived from the following considerations. If we do not use
N

-\. .

o controls then by direct estimation
L

a o o}

-‘ var(Y) = A (2.2.11)
S where 77 is the variance of Y. Now if we know the control coefficients, then
from (2.2.3)
o~ A ) ol
s var(Y(v)) = (I—pyx)—= (2.2.12)
. ‘!-.-‘ K
_.'_‘-:,

o

(S . . - . . .
A The ratio of (2.2.12) and (2.2.11) is called the minimum variance ratio (n,)

LN
&

<,

L # var(Y ~f 2
ot n = —(—L_—D- = 1—pyx, (2.2.13)

! var(Y)
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t;:' and we see that 100(1-n,) is the percentage variance reduction achievable
when B is known.
-f_:.
:::: When we estimate J with 3 we are now interested in
-:.
.. m= M (2.2.14)
e var(Y)
o
e
o
Y T4
7, is called the variance ratio. We note
‘\"
,:.r_ v ,"‘ (2 R
~T n = vai}:(d)l va.rLY(_u)) =N\, (2.2.15)
e var(Y(J3)) var(Y)
2
‘;4’
uf_.c'
L where A, is the loss factor due to the estimation of B.
b .
o At this point we have all the pieces save an expression for var(Y(3)).
:::: The following details are from Lavenberg, Moeller, and Welch (1982). First
o
AN we remember (2.2.5)
ae
> Y(3)=Y - 3(X—ux) (2.2.16)
o
) —_ A
peL To get var(Y(J)) the technique will be as follows. First we will write
o var(Y(3)) as a linear combination of the Y,, then we will fix the controls,
D "n_’
X ":-'i compute the conditional variance, and finally, exploit the conditional
1Y - A
» unbiasedness of Y(3) by computing the variance of Y(J) as the expected
Yy value ( with respect to the controls) of the conditional variance.
::_':'z- Define M as a @ xK matrix such that
Catad
WY
;J'
s
=
"
%4
®
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In—I ... 'k~

M = . . : (2.2.17)

TQ17%Q ... Tk 3IQ

where L, is the value of the +** control on the jth replication or batch, also

z, is the s;ample mean of the :** control. From (2.2.2) we can write B as

3 = oyxink = (Y =P 1, )MOM) (2.2.18)

where 1 is a column vector of 1s. Now we can write

-~

Y(3)=0bY, (2.2.19)

where

b! = }l{_llK — (X = ux) (MMM . (2.2.20)

Given X; = z; for k=1, ..., K, then 4’ is a constant vector. Now we have

the conditional estimator in terms of the Y,. We compute

var(¥(3) | X, =z, for all k) = b' [(var}’ | X, =z, for all k)]b , (2.2.21)

which reduces to

* PN AL A
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K var(F(3) | Xy =z, for all k) = o7 %+(i—ux)'(m«r')‘l()’c-ux)

) (2.2.22)

¥

& g “
LA A )

where o, is the residual variance (as described in (2.2.34)). Now we find the

expected value of (2.2.22) with respect to the controls, and we get

vy
Y,

; l’.n‘t

var(¥(3)) = Ex (2.2.23)

2
S R BV VORL: S

Now since

, ..
‘#"Jf'ff'/:"..'-‘. v

-~

[\
"
i

(2.2.24)

=
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we have
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1+L1(x—,1x)'zx E-uo ||, (2229
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We note that ( Anderson (1984))

&

14

T? = K(X—ux) Ex ! (X—ux) (2.2.26)

AN NN
.‘...l. }- f ,c '.l

is Hotelling's T2 statistic. Also Corollary 5.2.1 of Anderson (1984) gives
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Kenney and Keeping (1951) give

E(Fg x-o) = _K=Q

K-Q—2 '
Now (2.2.25) becomes
Ll 1+——E(T?) - 1+
K K—-1 K-Q

which finally reduces to

2
_ oA o;
var(Y(3)) = 57 1+—I£—:2—

E(Fg xk-q)

|

Examination of (2.2.14) reveals that X\, , the loss factor, is

N = varg}?gén
Y7 var(Y(9)

so from (2.2.12) and (2.2.30)

N et AT e e e e e T e e "

R I
A S 0 iy

>

T
«

S )
\.n.-.ﬁ.'v".ﬂ'\ %l‘
N, )

(2.2.27)

(2.2.28)

(2.2.29)

(2.2.30)

(2.2.31)

(2.2.32)
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oy Now that we have a theory which lets us develop confidence intervals and

quantifies the loss incurred due to the estimation of .J, we need a statistically
. valid procedure to construct the intervals. Lavenberg et al. develop
o procedures based on the method of independent replications as well as the
\ regenerative method. Here we summarize only the method of independent

replications, and in a later section we discuss procedures for the regenerative

. method.

. Now, YV, X =(z,,.., g ) are assumed to be jointly distributed as a
multivariate normal. Conditional on X =1z, Y will be distributed as

A univariate normal with

o EY |X=z)=p,+3X—px), (2.2.33)

where J is given by (2.2.2) ( the optimal control coefficient vector). The

N variance is given by

3 var(Y | X = z) = of (1—piy) . (2.2.34)

Il l.

So if we take the X as fixed we have the linear regression problem with

"’J“H‘s '\-' £

e
-

Hy
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+ €, (2.2.35)
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th

N where z;, is as given in (2.2.17) and s, is the is the known mean of the ¢

. 1]

control. It becomes apparent that we will be estimating iy with the least

squares estimate for the intercept of (2.2.35). We form our confidence

o interval in the standard manner.

Let ,t:y and 3 be the corresponding estimators of iy and J and let D

N, denote the Kx(Q+1) matrix on the right hand side of (2.2.35). From

regression theory the conditional distribution of J given D is

i 3~ Ny(3 o}pD)h) . (2.2.36)

where s;; is the upper left most corner of (D'D)"!. Now all that is required is

. . 2 . . .
an estimate of the common variance 7°. Such an estimate is given by

K _, K ~ . \
(SY =S (uy +3(z~1;))%)
2 k=1 k=1
* K—Q—1

Qo
I

(2.2.38)

So given the observed values of the control variables a 100(1—2) %

confidence interval for yy is given by

ey by £ tx_g (1= /2\/sy 7, . (2.2.39)

}AM‘GQ),‘J‘G .'bf xf "ﬂ
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2.2.2 Output Analysis Using the Regenerative Method

Lavenberg and Welch (1981) summarize a methodology for the
construction of confidence intervals based on the regenerative method. A
more detailed development is found in Lavenberg, Moeller and Sauer (1979)

as well as in Iglehart and Lewis (1979).

The regenerative method can be based on a single run of the model.
The method may be applied if there exists an increasing sequence of random
times that partition a run into independent and identically distributed cycles.
This sequence of regeneration times typically correspond to some
distinguished state of the model. This state is such that, when it is entered,
the model starts afresh according to the same probabilistic mechanism that
drove the previous cycles. Lavenberg and Welch (1981) point out that, in
complex simulations, regeneration points may occur so infrequently as to
discourage the use of this method. The construction of confidence intervals
using the regenerative method is discussed in detail in Crane and Lemoine

(1977), Iglehart (1978) and Welch (1983).

We follow Iglehart and Lewis (1979) in their application of the
regenerative method using control variables. Assume we observe in a run of

n cycles:

(Yj’ ij XJ) 1< .7. Sn’ ’

where 7; is the length of the j”" cycle, Y; is some response of interest and X,
is a @x1 vector of controls. Many steady-state parameters of interest can be

expressed as the ratio of two expected values. Let r be such a variable. A
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“controlled” point estimator of
ElY]
r =
E[7]
is given by
. [)7 - bX]
r(b) = ——— (2.2.40)

where b is a 1xQ row vector of control coefficients and Y, X and T are the
sample means of ¥, X and 7. We note that controls are only being applied
to the numerator of the estimator. This type of estimator is called a top-
controlled estimator. Eakle (1982) developed a two-stage procedure which
first applied controls to the denominator of (2.2.40) to reduce the bias of r
and then applied another set of control variables to the numerator to reduce

the variance of the estimator. We discuss only top-controlled estimators.

To obtain an interval estimator for r, it can be shown that

Vn(r(b)—r) D
cb)/7 n—00

> N(0,1),

D

n—CC

where denotes convergence in distribution and

-~

Jz(b)Evar(Yj —r7; —bX;). If we replace ofb) by an asymptotically
consistent estimator s(b) then the same convergence applies and we can

construct confidence intervals. However, we typically do not know the

optimal values of b. The optimal value of b is 7 and is given by
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b}: 3=pY —r7 X)X xx, (2.2.41)

.

T

.\-‘- wl -« N . .

S where Yyx is the Q xQ covariance matrix of controls and p(Y — r7, X) is the

1xQ row vector of covariances between Y — r7 and X. The vector 3

) - N

. minimizes the variance of r. An estimate of 3, 3 is obtained by using the

A appropriate sample covariances in (2.2.41). The variance of r can be

S

W estimated using
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.J‘-:_':: An asymptotically correct 100(1—a)% confidence interval is given by
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v Lavenberg, Moeller and Sauer (1979) describe a specialized set of ratio-type
;,,. controls for regenerative estimators.

"y

»

e
o 2.2.3 Analysis Techniques for Nonnormal Responses
i Lavenberg, Moeller and Welch (1982) present a method of producing
.'_:..'_
o confidence intervals based on the jackknife statistic, and they apply this
"--"'.
" method in a2 Monte Carlo study of a broad class of closed queueing networks.
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Let Y (3) be the estimator computed (2.2.16) using the methodology of

Lavenberg and Welch (1981) when the £ observation has been deleted.
N Compute the “pseudovalues”

) Jo= KY(3) - (K-1)T(3), 1<k<K. (2.2.42)

K -
g J.(3), (2.2.43)

!
[y

and the sample variance

(NN

e e

Ik

~ K ~ A
Si(3) = E( ,(3)=J(3))° (2.2.44)

e .

An asymptotically valid confidence interval is given by

P
".'

T(B) + ty_(1—a)S,;(3)/VK . (2.2.45)

Yy
A
':’"-{‘v“- Rk

"

. We are referred to Arvensen (1969) for proof. These intervals hold under

mild regularity conditions given in Miller (1974).

.'\(‘N' Taow

gL s SR M



2.2.4 Experimental Results

QY
RS
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Lavenberg, Mceller and Welch (1982) apply the control-variate

.l

o confidence intervals (2.2.39) and (2.2.45) across a general class of closed
[} )
¢
[} b
-. queueing networks. They develop three types of controls, service time
{

ey variables, flow variables, and work variables. The networks considered take
N
»-".';.. the following form. Consider a finite set (say of size S) of interconnected
Vol

1% service centers. These centers service D different types of customers. There
75O are a total of N customers of all types. Assume

y 1. Markovian Routing so that the next station visited only depends on the
-

current location.
QN
+ES
:-'_'.: 2. The service times for the the j”‘ type of customer at the i** service
':::'_ station are drawn independently from identical populations with finite
mean and variance.

o 3. Service time sequences and sequences of centers visited are mutually
Yagh independent.

R

(SN .

S The above networks form a general class of closed queueing networks.
R
JSAY . . .
eva Since the only random components of this system are derived from the
L .S

service time distributions and the multinomial routing distributions, functions

'_:-'.'; of these variables can be used as internal controls.

-:J:

:"f: The authors perform a rather extensive study across many different
.
" Bt networks of the type described above. Three response variables were studied
o

.t:; separately: the long run average waiting time (by customer type), the long
'\.I:h
" run rate at which departures occur (by customer type), and the long run
-t average response time (by customer type). The following are important
B
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conclusions of their work:

1. Work variables exhibit the smallest minimum variance ratios. (The
authors expected this since these variables contain both information on

service time and flow).

2. The loss factor derived in Lavenberg and Welch (1978) appeared to

adjust the minimum variance ratio correctly.

3. The actual coverage probability for nominal 100(1—a)% confidence

intervals did not suffer with the application of controls.

4. The regression method produced substantially smaller confidence

intervals than the jackknife method (with no appreciable degradation in

coverage).

5. The forward selection procedure (Draper and Smith (1981)) was used to

cope with the control variable selection problem.

Wilson and Pritsker (1984a,b) offer theoretical and experimental results
on what they call “standardized” concomitant variables. Assume we are
dealing with a Q-station queueing network. Define the input processes as
{(U,(k): 7> 1)}, 1 < k< Q. Control variables will necessarily be functions

of these inputs. Consider a control of the form

alk,t)
Xe(t) = (1/a(kt)) S (Uj(k)=m) , (2.2.46)
J=1
where a(k,t) = number of service times that are started at station k during

the time period [0,ti. Also y; is the known mean of the k" control. Wilson
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y ";:f (1982) showed that controls of the type given by (52) have asymptotic mean
o
. and variance equal to zero. He states that this result also applies to the
~.l
;-. “work” variables given by Lavenberg, Moeller, and Welch (1982). As a
.r:‘.'
"'_;:; consequence of this fact, the covariance matrix of the controls becomes
e
) asymptotically singular. The authors offer remedy in the form of
"_j:-::' standardized controls. Consider controls of the following form:
NN
..-:_-, ~1/2 a(k,t)
~ Xi(t) = (a(k,6)2 "3 (U(k) = )/ - (2.2.47)
J=1
e
4
'.(."\
AR
‘ Here 0, is the known standard deviation of the k** control. The vector of
‘ '
xS standardized controls is shown to converge to a multivariate normal
‘-_'.::'-‘ distribution with zero mean vector and identity covariance matrix, as the run
X
::"x length goes to infinity.
I. -
S5 One may standardize the "work" variables given in Lavenberg,
o
v Moeller,and Welch (1982) by defining the controls as
'-:3.-

®) , |
o X(t) = (VI fan( 7 () S W, 0) = mdfon, (2.2.48)

AT j=1

SO

Chli

(N

B~

L

o where w, = relative frequency with which a customer visits station k and
T L : : o
;:"_-: f(k,t) = number of service times that are finished at station k during time
L .

- period (0,t).

.

:"’_ Wilson and Pritsker develop a theory of controlled replication analysis
A

I

'_:'j which is based on the asymptotic multivariate normality assumption and

‘i . . .

e s present selected simulation results. A more thorough experimental treatment
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is given in Wilson and Pritsker (1984b). The variance reductions observed in

both papers certainly offer compelling evidence that further research in these

B

.
oy
Vody

areas may prove extremely fruitful. Experiments were carried out for

controlled replication and controlled regeneration analysis. The syvstems

4

g

e -
»

studied were a class of closed and mixed queues representing machine-repair

A
ph-s systems. In the controlled replication experiments, variance reductions in the
e
::: range from 20% to 909 were observed with confidence interval reductions
2.
ranging from 10% to 70%. After the eflects of initialization bias were
::?_ removed, no significant loss in coverage was observed. In the controlled
-_'.\
o regenerative experiments, variance reductions in the 30% to 90% range were
SR
p o observed with confidence interval reductions of 20% to 65%. Some coverage
\f'
,:-"_;: difficulties were noted (probably due to the inherent bias of the regenerative
.r__‘-
';.:::. estimator) but degradation seemed to stay within about 10% of nominal.
{
o 2.3 Univariate Simulation Metamodel with Multiple Controls

In all the papers reviewed to this point, we have been working with a

single underlying population and sampling from it. If we allow the population

.,:u’a;.u .l.'-.. ey

Lt

to vary, say over the design points of an experimental design, then we are

3

~
'j','j working in the multipopulation domain. Nozari, Arnold and Pegden (1984)
vy
. discuss the application of control variables for multipopulation experiments.
ﬂf—lj These experiments tyvpically involve some form of a general linear model.
o
y _".' This model represents a simplification of the simulation and, as such, it is
li
often called a metamodel. One object of multipopulation experiments is to
':'\':-", find a metamodel which can closely predict a response across the domain of
T
:-:3-: factor levels. Factor levels here correspond to to the design points mentioned
== earlier. Another object of such experiments is to identify as closely as
s
)
A
. |
s
"'/‘

(L
L%
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N possible the values of the metamodel coefficients. Such information may tell

\ us the relative sensitivity of a response to a particular factor. We also may
p

N

. glean whether or not certain factors should be included in the metamodel.

This latter objective is the thrust of the research put forward by Nozari et

D) al.

.-:: Let Y=(Y,,.,Yg) be a Kxl vector of independent observations.

;:: Each Y, is obtained from an independent run of the model and each has
P common variance 7. Assume

2

:Z;Iis; Y ~ Ng(Z 3,087 I),

= where Z is a Kxm known matrix of rank m, 3 is a mx1 vector of unknown

::;; coefficients and Iy is the K'xK identity matrix. The factors or functions

thereof are embodied in Z, when the factor levels are not random the matrix

D

‘_ Z is commonly called the design matrix. Let X; be a @ x1 vector of controls
s

- for the i** observation of Y. Assume X, has a known mean vector. Without
e loss of generality, we assume E(X])=0. Finally assume

- Y, I o Tyx

» v x ~ NQ+1 C y ZXY ZH (2-3.1)
AN :

‘. y where E(Y,;) = u; and Xyy and 4y are covariance matrices of the response
~
::;:— and the controls and the controls with themselves, respectively. Let L
:::':- denote the (Q+1) x (@ +1) covariance matrix in (2.3.1). Assuming the
: metamodel has been correctly specified, Nozari et al. derive expressions for
.:ij:

.‘;_-:

L%
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20 Scheffe’ type simultaneous confidence intervals for both the case when YL is
known and the case when . is unknown. In practice ¥ is unknown and must

be estimated. In this case, let A be a (m—h)xm matrix of rank m-h. Let

G =(Z x) VXZ(‘Ylv caet 4\'K)Iv

oy where G is Kx(m+Q) of rank (m+Q). Now for simultaneous confidence

intervals

NS
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where

Tt
i'o'-‘l T 1

WPolf

3ev =(I, 0)(G'G)'G'Y,

- e B
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P

w
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AR AIR
PR Y
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and F(@) is the alpha percentage point of a F distributed random variable

also (I, O)is mx(m+Q) with I, the mxm identity matrix.
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Nozari et al. define efficiency as

o2 K-m-—1
h C K-m-Q-—1

(P9
|
]
N
paly
(%)
|
3
(2]
|
'

var( (2'Z2)71,

where J are the estimated coefficients when controls are not used and
# = 5%1 — p3x). In similar fashion to Lavenberg et al. (1982), the loss

factor here is

2.4 Multiresponse Simulation with Multiple Controls

Rubinstein and Marcus (1685) extend the development of Lavenberg,
Moeller, and Welch (1982) to the estimation of a multivariate mean response
using multiple controls. Extending to p responses, we see that the controlled

estimator becomes

YB)=Y — B(X — ux), (2.4.1)

where Y is a pxl vector of responses, B is the pxg matrix of control
coefficients, and X is a ¢x1 vector of controls with mean vector u,.
Rubinstein and Marcus demonstrate that det(cov(Y(B)) = |cov(Y(B))|, the

generalized variance of Y(B), is minimized by

A= YyxSxx , (2.4.2)

...........



o A
g 32
.
. -
N
N
S
Y where
N
o~ Yyvx = E((Y=py)(X—=px)) (2.4.3)
~
A
¢
oy
Q'n.
! and
2
" 1xx = E{((X=ux)(X—ux)) . (2.4.4)
»
L
A --J . - . . . . .
k.- The resulting minimum generalized variance is given by
- 4 I v
; covY(I)| = |Svy — SyxSitUxr | = [Syvl TT(1 = p3),  (2.45)
(] i=1
o
-.J
,.
-
e where v = rank(Yyx) and p,-‘“’, t =1, ...,v are the canonical correlations
{
between Y and X that satisfy p; > ... > p, .
o
-.-‘
. The authors define efficiency of control variables as
Ky
S 52— a3 _ [Zvml (2.4.6)
> | var(Y)]| | v |
“~
>
>
- Porta Nova (1985) points out that the use of the term efficiency might not be
:',-: warranted here, because one seeks an increase in an efficiency measure,
':,:j whereas we seek to decrease 512 . In any case, (512 measures the relationship
_ between Y and X. One can see by examination of (2.4.5) that the larger the
. . .
. canonical correlations, the greater the reduction in the generalized variance.
.
?{ .
-
~
T

.
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o

b Now given

. o Y iy Yvy Syx

.::-:: Z= X \‘\P*Q Hx Sy Sxx T (2.4.7)
[}

(o .

S we take a random sample of k observations

e v,]

Z" = X.‘ , =1, ey K (2.4.8)

.\

-

e

o

L The authors consider two cases :

[

::::j 1. The matrix Jis known.

:':_'.4 2. The matrix J is unknown and must be estimated. Case (1) can be used
{ .
o to derive the multiresponse analogue 7, of the minimum variance ratio
]

o n, (see equation (2.2.13)), while case (2) is used to derive the
- multiresponse analogue A\, of the loss factor A\ (see equation (2.2.10)).
"N Both then are to be brought together to form what the authors call
i efficiency and Venkatraman and Wilson (1986) call the variance ratio
l:\i

j'_:.: (712)-

~r:

e Examination of (2.4.5) and (2.4.6) shows that the minimum vat:ance
::::: ratio is given by

SN

‘ " , Y .

e of =1y, = [T(1 — pf), (2.4.9)
.l“ l’[

.:;.

o where 1/ and p are as in (2.4.3). Rubinstein and Marcus point out that r);
T |
N
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can be measured by the ratio of the squared volume V] of the confidence
ellipsoid formed about the estimate of iy using control variables to the
squared volume \23 of the ellipsoid {ormed by direct simulation. Specifically,

(2.4.7) implies that

K (Y= ) Syv(Y—piy )~y (2.4.10)

where \'p2 is a chi-squared random variable with p degrees of freedom.

Hence we can form a 100(1—a)% confidence ellipsoid for iy from

Pr{K(Y=py) Syvy(Y—py) < xF o) = 1—a, (2.4.11)
where
v-L Oy ( )
=— VY, . 2.4.12
K 2

The volume of this ellipsoid is given by

Vi=p"'C(p)| Evv] 1/2(Xp2,1—0 /KPR, (2.4.13)

where

C(p) =27""%/T(p /2).

We can also form an ellipsoid based on the controlled estimator from
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v

.r_.:)-. ‘ 3 ,

};:: Pr{K(Y—puy) Sy y(Y—iy) < \F o) = 1—a. (2.4.14)
e
X

Cd
NN The volume of this ellipsoid is
B
'vf:-
. -1 3 1/2(,,.2 2

D) Vo =p 7' C(p) | Sy (2 1=a )2 (2.4.15)
VSN
B
\:‘: We note that the squared ratio of (2.4.13) to (2.4.15) produces
': ' 9 .V [yl
’--'_- bl = 7}2 = 9 = < y (2.4.16)
p i'::i' V‘_) I “‘"YY’
‘O
s
S

o

“w . .

e which verifies (2.4.9).

S

LYY
-.‘\.' In practice X; (the covariance matrix for Z given in (2.4.7)) is unknown
R, and it must be estimated. Let S, denote the sample covariance matrix
§ :

o S Syy Svyx

’ . " = 2.4-17
, z Sxy Sxx ( )
L

o

o
K.~ - where, for example,
' S L (Y,-)(X,-X) (2.4.18)
e K1 o s o

v x
\-‘_: where Y is given by (66) and X is constructed analogously. Now we estimate
A R

:}:'.4_: J by 3=SyxSxx and form the K controlled responses as

-':’,

Y](j) = Y]’_‘S(Xj—:“’x)? 1 S ] S K. (2.4.19)
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L

Under our assumption of multivariate normality an unbiased estimator of uy

=
':‘,.‘:"

is

M)

—3 (X—p1x) (2.4.20)

L AP 4
o
T
N
i

N We can form a 100(1—«)% confidence interval from the relationship (Rao

3z (1967))

b Pr {(?(3 J=iv ) S | 1 (¥(3)—ny) <

CASA (d’d)[(K_Q —l)p /(K_Q -p )]Fp K-Q—p (1—0{) } =1-q,

where

= d' =1k /K — (X—ux)(G'G)"'G!,

i) where G is defined in (2.4.25) and 1y is a K dimensional column vector of

ones. Also we have

K-1 _
x = m(Sw—vasmlchy)-

&

. Rubinstein and Marcus define efficiency of control variables as

o E{ [thxl(d'd)p ,‘

€ =

'-:-' E{(l/K)*’ | Syy] }

R P COITC A LR SRS
o -J"‘n.l,‘p‘.‘-a'h.’.\) - ‘\_.\'. oy
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oy this is the ratio of the expected generalized sample variance of Y(.3) to the
i
Yl _
v expected generalized variance of Y. They prove that
:‘_-::' 9 v 9
:':—; €& = CI(K)Q»p)CZ(K)Qyp)H(l-pi)
v 1=1
' “

o

s
N
1
’

A

where 1 = rank(Yyx) and

SRS

FREACRERE)
(O R S

AP R R

CA(K.Qp) = T [(K-@-1)(K—1)/(K-@-1)(K—i)]

1=1

X v
s

‘l ‘l ., »
a s,

2
.’ “
""‘IL. -

P and

D

J

Q(Q+2) ... (@+2(;-1))
(K-Q—2) ... (K—Q —27)

P
:.-‘ C2(K7Q,p) =1+ 2
, j=1

-::: we see immediately that the loss factor for this measure of efficiency is

3 CI(K7Q7P) CZ(Kerp)'

Venkatraman and Wilson derive a more natural extension of the loss
factor of Lavenberg, Moeller, and Welch (1982) by simply calculating the

“efficiency” or variance ratio as

S Ny =My (2.4.21)

where 77, is the variance ratio given by
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\_.
A
‘\:-
B~ . »
:-: var( Y(3)) K-2 v
o~ Ny = — = | — ][(1 —p), (2.4.22)
. var(Y) K—-Q -2
e
-‘.‘-’
N
"" r/z‘ is the minimum variance ratio given by
“
‘ ~": * var{Y(J v 2
B ", Ny = _(_(—ll = ll(l—/)‘ ), (2.4.23)
[~ var(Y) i=1
D ".l
L)
e
o and ), is the loss factor given by
Yy N P
b N, = arl¥(d) _ | _K—2 | (2.4.24)
var(Y(3)) K—-Q -2
g
2
"
o
o
{ ] To calculate A\, we need an expression for var(?(é)). One way to
. - TS . o
3“ calculate this is to write Y(3) as a linear combination of the uncontrolled
B
",;" responses and then calculate the covariance matrix of this vector. This

procedure is an extended variant of the procedure used in Lavenberg,

Moeller, and Welch (1982).

Let G be defined as

e (X,-X)

G = . (2.4.25)
o~ )

L ]

::;

o




-,

YN I

-
SO A AR A A AR

ey

Ve
NS

where X,, 1 < ¢ < K is a @x1 column vector of observed controls and X is

the @ x1 vector of the sample control means.
Analogous to equations (2.2.18), (2.2.19), and {2.2.20) we can write

Y(3) =¥ - BX—ux) = (Y5,..Yg)H, (2.4.26)

where (Y,,...,Yg) is the matrix of observed uncontrolled responses and H is

defined as

L

H=—lg = G(G'G) X —ux) (2.4.27)

where 1y is a K dimensional column vector of ones. The authors show that

Y(J3) is an unbiased estimator of uy.

var(?(g)) is calculated via the law of total probability for expectations.
First, we calculate the conditional covariance of ?(3) given the observed
controls, then we take the expectation of this quantity across the controls.
This double expectation is the correct quantity since the unconditional and

conditional expectations of ?(5’) are the same.

After both expectations are taken we get

var(Y(3)) = ——————X% (2.4.28)

where

Yy x = Yvy — Uy ety (2.4.29)
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Now

cov(Y(~)) = * Yvix (2.4.30)

so the loss factor A\, is

>
(-]
I

N P
lecovY(3)] [ K-—2 ] (2.4.31)

| covY(~)] K—-Q -2

772' is given by (2.4.23); hence the generalized variance ratio n, is given by

P v
Ny = [?{I_{—Q“i—é—] [1(1=p3) . (2.4.32)

) t=l

Obviously we require K—Q —2 > 0.

Venkatraman and Wilson provide guidance for limiting the number of
controls. They state that if A is a user specified upper limit on the loss A,

then at most

Q" = [x-2y1 ~ A7)

controls should be applied.
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2.5 Multiresponse Simulation Metamodel with Multiple Controls

Porta Nova (1985) extends the development of Nozari, Arnold and
Pegden (1984) to the case of multiresponse metamodels with multiple

controls.
The model employed is as follows

Y=2Z3+XA+R

where Y is a K'xp matrix consisting of K p-dimensional observations, Z is a
Kxm design matrix, Jis a mxp matrix of unknown parameters, X is a KxQ
matrix consisting of K Q-dimensional vectors of controls, A is a @ xp matrix

of unknown control coefficients and R is a Kxp matrix of residuals.

Porta Nova provides point estimators for 3 and A

3 =(2'2)"" | I-X(XPX)"'X'P ]Y,

and

~

A= (XPX)'XPY

where

P=1I1-2(2'2)'Z".

A 100(1—2)%% confidence ellipsoid for vec J (vec J is a column vector
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obtained by concatenating the columns of J) is derived from

o

¥
-

A

vec (J — J’)’(EYHXBB’)_l vec (;’ -J) |X= T,flp(K—m—Q)
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where T,ip(K~m—Q) is Hotelling’s T? with K—m—Q degrees of freedom,

S
-I "
T

here

;L B e
e
e,

[Rr R A

Lo B=(2'2)y'z [1 - X(X'PX)‘IX'P]

and

T Syix = R'R/(K-m—Q)

(ﬂ where
i R=Y — [23 +Xj]

and ® is the Kronecker product. The Kronecker product of the mxn matrix

“,.' A with the pxg matrix B is the mp xng matrix
(AIIB e AlnB
o
g A®B =
o
290
v . .
o AmIB P AmnBJ
- A 100(1—2)% confidence ellipsoid about vec Jis formed from
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K—m—Q —mp+1

Pr
mp (K—m—Q)

T,%p(K—m—Q) < Fmp,K—m—Q—mp-i—l(l_O‘) =l-a

Porta Nova generalizes the minimum variance ratio as

v m
‘ 2
=TI =»r0)|
t=1
he also provides a loss factor of
K—m—-1 [

where v = rank>yx and p; are the canonical correlations between Y and X.

2.8 Selection of Regression Models

Typically a practitioner is confronted with multiple candidates for
controls. It is possible (in view of the loss factor) that if he elected to use all
the candidates, he might actually induce variance into his estimator.
Therefore, a control variate selection orocedure that finds the “best” subset
of controls is desirable. We have seen that the principal technique employed
to exploit control variates is linear regression. In our application, control
variates are used as predictors in a linear regression on some response of
interest. The statistical literature is replete with papers that deal with the
selection of predictor variables in the regression context. However, relatively
little has been written on the selection of controls. In this section we review

control variate selection techniques as well as the more general literature on
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the selection of predictor variables in linear regression.

2.8.1 Review of Control Variate Selection Techniques

Lavenberg, Moeller and Welch (1981) applied a restricted variant of
“forward selection” regression (Draper and Smith (1981), Chap. 6) to selecting
a “best” set of controls. Nozari, Arnold and Pegden (1984) developed
variants of the “all regressions” and “forward selection” procedures. These
variants were tailor-made for the selection of controls in the situation where
the objective was the estimation of a univariate simulation metamodel with
multiple controls. Porta Nova (1985) and Venkatraman and Wilson (1986)
offer advice on the number of controls tc be used but do not discuss how to

select these controls.

2.6.2 Review of Variable Selection Techniques

There are several good survey articles written on the variable (predictor)
selection problem. Draper and Smith (1981), Thompson (1978) and Hocking
(1976) provide detailed surveys of the variable selection problem itself, while
Hocking (1983) offers a succinct overview of the general topic of linear
regression. Siotani, Hayakawa and Fujikoshi (1985) provide some

multivariate extensions of selected methods.

To organize the discussion we will classify the selection techniques
according to model and objective. Model will refer to either multiple linear
regression (univariate response) or multivariate linear regression (multivariate
response). The objective of a model will be classified as one of the following:

prediction, description or control. Aitkin (1977) makes the distinction
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Y between description and prediction. We draw attention to these objectives
w
Wy
’ only to underscore our objective, control.
g
.‘.‘ . 3 .
::.: 2.8.2.1 Multiple Linear Regression Model
! ri
]
o Basic Model. The multiple linear regression model takes on the
. :
~r following form
Ny
N
u=XJ+¢,1<1 <K
&5
- . :
- where y, is the itk independent observed response, X; is the i observed
: 1x(Q 1) row vector of predictors, Jis a (@ +1)x1 column vector of unknown
:..-.: parameters ( with a 1 in the first column) and ¢, is the i residual. We
- assume that E(e,) = 0 and var(e;) = 0%, 1 < i <K. We note that
g Ey =X3
o
) and
L
N:.
<.
:‘_ varly, = o,
S
e
o : .
if we can take X as fixed. This is never the case when we employ control
; variates. We must be careful to distinguish between the case when X is fixed
and the case when X is a randoem matrix. Following Thompson (1978), we
:'.j impose the following condition for X random. Assume y, X =1z, .., 1o are
‘:-:: jointly distributed as a (Q~1)-dimensional normal distribution with unknown
'--
_ mean vector and covariance matrix. The conditional expectation of y given
o
‘\:_
L
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where 3 and o® can be expressed in terms of the mean vector and covariance

NS
[
Pl

matrix (see Anderson (1984), Chap. 2). Now conditionally on X =z, y is

2Ty ... i
- "-l -

>
’ I
A

normally distributed with mean and variance as given above. Finally,

t

conditioned on X = z, the model is

L

p

. y = X3+, (2.6.1)
,

{

S where X is 1x(Q +1), 3 is (@ +1)x1 and E(¢) = 0 with var(e) = o*. We will
see that certain expectations can be computed over X in the case of random
o

predictors that lead to criteria for variable selection.

AN . .
:-f'.r, It turns out that the estimates used for 3 and o® are the same for either
¢ 2,

20 . . . . .

:.'_-'. model, however; the distributions of the estimators differ. If we array all the
oo

¥ 3

i K observations we have

o Y =X3+¢
:,:::: where Y is Kx1, X is Kx(@+1), Jis (@ +1)x1 and ¢ is Kx1. The least
::_’,:: squares solution for J is

P> 3 = (XX)"'XY
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28

™

N An unbiased estimator of 7 for both methods is given as

2 Ao —L v o x3yy —x3)

~ K-Q—1
b

‘ . .

a Selection of Variables
- Given we have Q candidates for predictors, we wish to select a subset of
::j: predictors that is in some sense “best”. Using the notation of Aitkin (1974),
::‘.: we assume that the first p variables are selected and the last @ —p are
= eliminated. The subset model is

Y = lel + ngz + C',

2,7

where

e
>

I
Rel

o

N
e

and

3 ‘:“t{‘v‘ M

. Q
NN

3 = (315%)-

YOy
G AN

A

p

Here 3, is included in X, so X, is A'x/p+1). If the last Q-p variables are not

. included in the model we take 3, = 0.
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The methods we survey are typically of the following form. A criterion
is chosen that reflects the intended use of he regression model. Subsets are
evaluated according to this criterion and the “best” subset is chosen as the
solution. Most taxonomies (Draper and Smith (1981), Thompson (1978),
Hocking (1976)) are dominated by three approaches: 1) All possible

regressions, 2) best k subset regressions and 3) sequential procedures.

The all regressions approach entails a complete enumeration of all 29 —1
combinations of predictors, each evaluated according to a criterion. Once
the criterion has been calculated for all subsets, the information is arrayed
and a subjective choice is made based on the criterion values and, perhaps,
auxiliary information. Clearly, this is a computation-intensive method. This
method was not a tractable procedure until the advent of modern high-speed

computers.

Best k subset regressions and sequential procedures have been developed
in an effort to avoid the examination of all possible regression subsets.
Draper and Smith (1981) cite the branch and bound algorithm given by
Furnival and Wilson (1974) that computes only a small fraction of the
possible regressions and yields the “best k " subsets (k is user specified).
Sequential procedures are more economical than the all regressions approach
in that they tryv to find the “best” regression of a certain number of variables.
There is no guarantee that these methods will find the “best regression”, in

fact, different sequential procedures often yield different solutions.

The all possible regressions and best k subsets procedures use a specified

selection criterion. There is nothing from preventing us from applying these

criteria in a sequential fashion. However, we will only discuss sequential
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:"..-;‘ procedures that are based on a sort of partial F-test. Our discussion of
* sequential procedures will concentrate on 1) Forward Selection, 2) Backwards
":j-f Elimination and 3) Stepwise Regression. First we discuss the following five
.:_:..

- popular selection criteria: 1) the S, criterion, 2) Akaike's Information
| Criterion (AIC), 3) Rp2, 4) R} and 5) Mallow's C, criterion. Next we discuss
"\-'_‘:: the three sequential procedures. We will end our discussion of variable
-
_\::: selection techniques for the multiple linear regression model with a summary
i of some other methods: 1) Ridge regression, 2) Principal Components
:‘_-:T Regression, 3) Latent Root Regression, 4) Press and 5) Inferential techniques
N
b due to Aitken and McCabe.

tw‘:

~
b Selection Criteria.
P
.
{
-,

- The S, Criterion. The first selection criterion we discuss is the S,
D criterion. Thompson (1978) recommends this selection criterion as preferable
O if the predictor variables and response can be taken to represent a (Q+1)-
- dimensional normal distribution. This criterion seeks to minimize the
ol expected mean square error of prediction. Following Thompson, mean square
n:\

- error of prediction is given by

o ) ~ N2

N MSEP = E,(y—y,)",

":"_::ﬁ where y, y, are respectively the observed and predicted values of the
:: response that correspond to some subset of size p (p <Q) of predictors. It can
N

v

‘ be shown that

N

~ .
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E,(y—y,)" = Z(1+K+T3),

e

where er2 is the residual variance of the p-variable equation and T? is a
Hotelling’s T? statistic that is a function of the regression sample and the p
predictors. If we take the expectation of MSEP across all regression samples

and predictors sets for the p variables we get

2
.
P K K—p—2
This is estimated by
SSE
E —_ -_P 1_;_K’+.E.(£<__+-_l)_ ,
P K(K—-p) K—p-—-2

where SSE, is the sum of squares due to error from the p variable regression.
After some algebra and recognition that K is fixed for a particular

experiment, E, is simplified to

Lindley (1967) offers a Bayesian version of this criterion.

Akaike’'s Information Criterion (AIC). Akaike (1973) proposed a

criterion of the following form
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AIC, = —2log( f(y:iz.7) )+2¢

PN

where f(y;z:,g?) is the p.d.f. (likelihood) function of y evaluated at ?9, A are
the maximum likelihood estimates of the q unknown parameters of the subset
model. Akaike derived this criterion from information theoretic
considerations. This criterion does not enjoy widespread acceptance as a

selection criterion. Schwarz (1978) offers a Bayesian version of AIC.

The Coefficient of Multiple Determination sz. The coefficient of

multiple determination sz is defined (for a subset of size p) as

,  SSE,
R':l_
P SSTO

where SSTO is the total sum of squares for y. The quantity SSTO is
constant for all possible regressions and SSE, is monotonically decreasing in
p ( a useful fact exploited by Furnival and Wilson (1974)), hence, we do not
seek, necessarily, to find the maximum sz. Here we are looking for the point
where adding additional predictors is not worthwhile because of a small

relative change in sz. This method is clearly subjective.

The Adjusted Coefficient of Determination Rz The adjusted

coefficient of determination R} is defined as

SSE,
SSTO"

Ree| 2L
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This criterion takes into account the subset size p and penalizes candidate
predictors whose addition does not adequately reduce SSE,. Neter,
Wasserman and Kutner (1983) suggest graphical procedures for both sz and

RZ.

Mallows’ C, Criterion. Mallows (1973) suggests a criterion based on
minimizing MSEP in the case X = X, .., Xy are fixed. Here we will assume
that the “true” model contains all Q predictors. We seek to find a subset
model (although biased due to misspecification, see Hocking (1976)) that

provides a similar MSEP to the Q variable model and is nearly unbiased. It

can be shown that

MSEP(g,) = bias(3,)? + var(g,).

If we total the mean square error for all K fitted values and divide by ¢°, the

true error variance, we get

1 K ~ 2 K N
Iy = 55| S [EG)-E) [+ Svary)|

=] 1=1

a “standardized” total square error as a criterion. It can be shown that a

gocd estimator of 'y is C,, where
SSE,
C} = ;2 '_U{—2P%

and
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When there is no bias in the Q predictor model. E(C,) = p. If we plot C,
vs. p., models with substantial bias will "rnd to fal] significantly above the
line C, = p. The strategy is to look for subsets with low bias and small C,.
Thompson shows C, is closely related to Rpg and Rf. She points out that

the C, procedure tends to select a larger set of variables than R:.

Sequential Procedures

In this section we will discuss three sequential variable selection
techniques: 1) Forward Selection, 2) Backwards Selection and 3) Stepwise
Regression. All these techniques are based on the “extra sum of squares”

principle as related through the following theorem given in Thompson (1978).
Theorem. Given the linear model

Y =XJ + ¢,

where Y 18 Kx1 , X is KxQ, Jis @ x1 with ¢ a Kx1 vector or residuals such

that E(¢) = 0 and var(¢) = #*I. Then Jpe1 = ... = Jg =0 implies that
SSio_ Q—P
F = Q P\/ \F ko
MSE, 9-pK-Q

where 5S5_, = SSRy; — SSR, and SSRy is the sum of squares due to
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regression from all Q predictors.

We note that SS5_, is the extra sum of squares due to the Q-p extra
variables in the model. The strategy of all three procedures in this section
will involve successive partial F-tests that test the contribution to total sum
of squares. These tests decide whether new variables enter or old variables

leave the model.

Forward Selection. In the forward selection procedure we start with

no variables in the model. The algorithm proceeds as follows:

1. Compute the sample partial correlation coefficient (w.r.t y ) for all the

predictors not in the model.

2.  Choose as the entering candidate that predictor with the highest partial

correlation with the response.

3. Perform a F-test based on a model of order equal to the current number

of predictors in the model plus one for the entering variable.

4. If the F statisti¢ is significant continue with step 1; otherwise terminate

the procedure.

Backwards Selection. In the backward selection procedure we start

with all Q predictors in the model. The algorithm proceeds as follows:

1. Treating each predictor as the last to enter, compute

SS

Fi=———
' T MSE,
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.J-_ for each i*" variable not yet deleted.
.l

o

o Choose the minimum F; as the candidate to leave the model.
N
'::-:.Z 3. Compare the candidate’s partial F to a critical F.
i
) o . .
. , 4. If the partial F is nonsignificant we delete the candidate from the model
o
’ and continue with step 1; otherwise we terminate the procedure.
al
b ’\
.:_\
: Stepwise Regression. In the stepwise regression technique we extend
v the forward selection technique to allow for the deletion of variables at each
Pl .
w3 step. The algorithm proceeds as follows:
.; 1. Proceed with steps 1-4 of the Forward Selection technique.
KL
~ 2. If a variable is included at step 4 of the Forward Selection technique
x’
s

then calculate partial F statistics for all the variables currently in the

e model.
- 3. If a partial F is below the critical value, delete this variable; go to step 1

in either case.

LI
P
::?_: As we mentioned earlier there is no guarantee that these methods will
o
s arrive at the same ( or “best” for that matter) solution. There is some
: evidence that backwards elimination is superior to forward selection (Mantel
(1970)). Draper and Smith (1981) prefer the stepwise procedure.
e, Other Techniques
o
VO
:',-:- Ridge Regression. The technique of ridge regression was developed to
A

counter the effects of multicollinearity. Multicollinearity can arise when some
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subset of the predic ¢ variables are highly correlated. In the linear model

given in (2.6.1), these high correlations can cause the matrix X'X to be nearly
nonsingular. Rather than use the standard least squares estimators for J, we

introduce the biased “ridge” estimator due to Hoerl and Kennard (1970):

)

Jp = (XX +cl) XY ,0< ¢ < x, (2.6.2)

where ¢ is an arbitrary constant used to perturb the diagonal of the X'X
matrix and thereby, hopefully, eliminate the “ill-conditioning” of the X

matrix.

In practice a graphical aid called a ridge trace is employed to help find a
good value of c¢. The ridge trace is a graph of the estimated coefficients
(using (2.6.2)) vs. values of ¢ (typically 0 < ¢ < 1). The ridge trace is
examined for a value of ¢ where the estimated coefficients stabilize. This
device can also be used as a variable selection tool by identifying those
predictors with 1) unstable ridge traces and 2) coefficients close to zero.
Draper and Smith (1981) are careful to point out that this technique is not
usually used for variable selection. Thompson (1978) objects to to this
method on two grounds: 1) the method is arbitrary in that it lacks a specific
criterion and has no stopping rule and 2) the relative magnitudes of the

predictor variables are ignored.

Principal Components Regression. In principal components
regression the approach is to break the rows of the X matrix into its
principal components (we discuss the principal components technique in more
detail in a later section) and retain only those components that explain the

greatest portion of the “variance” in X. The technique can help to remove

_). -I\-' .r\..

Y NN e L L, X
""{."-‘!-4«.-.""_«.\. e «.“""" -\"' -.. ,J,\‘,_ < ..\.'.J.._,

o

&

AR RS A
_"I .’ /1‘\




<) 57
D
J. the problem of multicollinearity (by reduction of the dimension of X) but
!

suffers from forcing the investigator to work with predictors that are linear

--‘ compounds of the original predictors. These linear compounds may be

- difficult to interpret.

“

A Latent Root Regression. This method represents an attempt to
Zt improve upon the principal components method. In latent root regression we
\_}" augment the “correlation” matrix of X (used to extract the components in
- principal components regression) with Y. Now we extract the latent roots
(eigenvalues) and corresponding latent vectors (eigenvectors). Next, we
:;_ array the eigenvalues and eigenvectors in tabular form. We look for pairs of
~d eigenvalues and that coeflicient of the associated eigenvector that
: corresponds to Y that are small. Webster (1974) provides guidelines for
E:' smallness. If the smallness criterion is met, the eigenvector(s) in question is
v (are) candidates for deletion from the model. Next, we estimate the
_:. parameters for the subset model, back-transform into the original variables
~ and compare to least square estimates. It is important to remember that the

o
) new estimates are biased. We can perform candidate examination in a
": method similar to backwards elimination (details in Webster). Draper and
:;, Smith do not recommend this method to the majority of practitioners due to
E . its inherent bias and complexity.

PRESS. Prediction Sum of Squares (PRESS) is a hybrid method
*_\' proposed by Allen (1971). It is hybrid in the sense that it combines all
_ possible regressions and residual error into a psuedo-jackknife procedure.
'::E: For each subset of size p, we delete one observation at a time and use the
"::: remaining observations to predict the deleted response. At each deletion we
-‘ compute the difference between the observed response and the prediction.
.'.:
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This quantity is called the predictive discrepancy. Once through the data, we
sum the squares of the predictive discrepancies and proceed to the next size
of subset. When all the subsets have been exhausted, we array the
information and choose a model with a low sum of squares and subset size.
Draper and Smith (1981) point out that, although the method helps detect

influential data points, there is no set stopping rule and the method is

computation-intensive.

Inferential Methods. Aitkin (1974) points out that application of
sequential procedures (forward selection, backward elimination, and stepwise
regression) suffers from a serious drawback. The Type I family error rate for
the sequences of dependent F-tests is unknown. Aitkin offers a simultaneous
test procedure that controls the family error rate in the subset selection
problem. If a partition of X = (X, X,) ( X is Kxp,,X, is Kxp, and

p1 + pa = @+1 ) is prespecified then it is well known that if

with the same assumptions as in section 2.6.2.1, then a likelihood ratio test

for 3, = 0 is based on

where R;,:El is the squared multiple correlation of y with the predictors X;. F

has a noncentral F distribution and a test can be constructed for 7, = 0 by

finding the appropriate critical point of the null distribution. Aitken finds a
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simultaneous test for all partitions X, by noting

KA U(X,) = poF = (Rx — R.\’;)2 (2.6.3)
: VP T IS RE)K—Q 1) >

and defining

< U = maXx, [Ly (Xl) }

»
v

. .
1 LR

We have the simultaneous test for all partitions if we do not reject a

o X

ol

particular partition when

»

LR
e
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U(Xl) < CIG,Qa

«
ot
o %

)

::;'_:' where Cg o is the 100a% point of the null distribution of U. Examination of
::::: (2.6.3) shows the maximum of U(X,) occurs when X, consists only of the first
P column of X, that is, the column of ones. In this case

o

e
."- S
“a PR

2
B

F

Rx

. ot = 2 .
S8 (1-— Rx)/(K_Q-l)
3
R
..\.' . . .
e U/Q is noncentral F and the simultaneous test that does not reject the
Y .
hypothesis J, = 0 for an arbitrary partition if
i
o R% — R},

e QF, 1 ).
o (1 - R3)K—g-1 2 ex-enl)
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-::- Altkin calls subsets not rejected. - - adequate.

e

N In the case where the regression equation is to be used for description
:.’_:',' rather than prediction, he otlers simultaneous testing procedures for the cases
g

-’4 of X fixed and random. He calls subset models, that are not rejected by this
\

P procedure, MSPE (Mean Squared Prediction Error)-adequate. Let E, be
{:';: defined as the MSPE for the full model when X is fixed. Let E, be defined as
.~

GRS

A the MSPE for the full model when X and y are jointly distributed as a
e multivariate normal distribution. The simultaneous procedures test the
- hypothesis Hy: E; ~— E,-* =0vs. H:E —E <0 (i=0,1,2 , Aiktin includes
:':'__: the case i=1 where X is taken to be distributed uniformly over z, ) where
[ .. . .

SN E; is MSPE for a subset model. The approach is to classify a subset as
.' MSPE-adequate if the MSPE for the subset is not significantly larger than
y the MSPE of the complete model. The test statistic for Hy: Eq — E; = 0 is
i 3%, X' 13,

::.: FO,= S ot o—1 !

7 X% 15001 Xs 4

)

e

o where J, are the least squares estimates (in the full model) of J,,
) ::'_.-'_'. X, =X, — X, — S, SH (X, — X)), Sy is the matrix of sample covariances
o
Ay -
D between elements of X, and X, Ss; = Sp» — 55,5.1'S;, and 7% is an
:'_j:j'_- estimate of the residual error. The simultaneous test which does not reject
e the hypothesis H, for an arbitrary partition if
P 1
. FOI<QFO ‘;\’_Q_l(l),
’ |
) where FQ] w-g-1( +)is the 1007 point of a noncentral F with Q and K-Q-1 “
v
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degrees of freedom and noncentrality parameter of 1.
The test statistic for Hy: £, — £, = 0is

(R% — R3)
o 1 - R%

the simultaneous test that does not reject the hypothesis H, for an arbitrary

partition if

(p/(K-2)) . . .
where hp\z.;{(—p,—)l) is the 1000% point of the distribution of the squared

multiple correlation coefficient based on p, and K—p;—1 degrees of freedom

when the population squared multiple correlation is p,/(K—2).

McCabe (1978) proposes a framework for variable selection called a-
acceptability. Basically, a subset is considered i-acceptable if the parameter
estimates for the reduced model {all into the 100(1—n)% confidence region
formed by the full model. We look for subset models that are “close” to the
full model. Given the linear model of (2.6.1) it is well known that a

100(1—a)% confidence region for J is given by (see Johnson and Wichern

(1982), pg 304)

S,, = b: D(’)) < SQ(Q +1)FQ*1.K—Q—1(1—Q) s
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where D(b)=(3ls —b)’(]\("\')(:':S —b). Here 7, are the least squares

estimates from the full model and s° is the estimate of residual variance

Lr.- B ~

(s” = SSE(7,)). We note D(b) is the squared distance of any estimator b
from the least squares estimator .7, in the units provided by X'X. Therefore

values of b for which

) D(b) <d.,,
-
.-\.
o (where d. = s°(Q +1)Fg 41 k-g-1({1—a)) are a - acceptable. The a-
- ’
" acceptable subsets form a collection. If one of the subset models is the true

model, McCabe provides a selection rule that guarantees that the probability

that the correct model is included in the collection is greater than 1—a. The
1)

rule is to include all subsets for which
C SSE(3,)

g Q+1

<1+ Four keo_1(1—0),

- SSE(3,,) = K—Q-—1 @*hK-@ 1(1=e)

‘s )

-4 where J, are the coefficients in the subset model. This rule is derived from
1) the fact that D(js) = SSE(ES) - SSE(?,S) and 2) for any 3= 3, (the
: true model is the subset model), Pr, (3’ £S5,)>1—a. McCabe notes that

. P 2 . .
Aitkin's R*-adequacy selection rule can be written as

: S — LR o (1-0)
: - = P -Q-1 ,
- SSE(3,,) K-Q-1 @K@
N
o
o : . . . 2
. and concludes the collections of subsets obtained using R°-adequacy are not
A
3 larger than those subsets obrained 1sing ri-acceptability.
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;; 2.6.2.2 Multivariate Linear Regression Model

e

-

,.: Basic Model. The multivariate linear regression model takes on the

,'; following form

\ Y, =X, 3+¢,1<i<K

.

-

- where Y; is the :** independent observed response vector of dimension m, X;
: is the i** observed 1x(Q+1) row vector of predictors (with a 1 in the first

E column), Jis a (@ +1)xm column vector of unknown parameters and ¢; is the
-t i 1xm vector of residuals. We assume that E(¢;) =0 and cov(g) = ¥,
~~ 1 <1 <K. We note that

~

ElY|=Xx3

{

:_,:. and

. varY ] = X

iz

:-; if we can take X as fixed. As in the multiple regression case, we must be
: careful to distinguish between the case when X is fixed and the case when X

is a random matrix. We can use conditioning arguments to show that we
may estimate the parameters of the multivariate linear regression model

using the same formulae for both random and fixed predictors. If we array
{ all the K observations we have

Y =X3+:

|

-, A-\ L .'_'.'.'. .--‘;- .
AT I I P '.l.’:.".g‘ﬂ- P ‘,
. IR S TPV T N AV AN SRS -4
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where Y is Kxm, X is Kx(Q +1), Jis (@ +1)xm and ¢ is Kxm. The least

. 3.
squares solution for Jis

A

J = (X'X)"IX'Y,

and an unbiased estimator of ¥ for both methods is given as

& _ [y =x3)Y(Yy —x3)

o , (2.6.4)

see Anderson (1984), theorem 8.2.1, pg. 289.

Selection of Variables

Relatively little has been written concerning the selection of predictor
variables in the multivariate linear model context. Many papers have been
written about variable selection in the closely related discriminant analysis

problem; Seber (1984) provides a review.

Siotani, Hayakawa and Fujikoshi (1985) offer multivariate extensions to
C, and AIC. They also show how the forward selection technique can be
extended to the multivariate case. Let RSS, be the mxm matrix of residual

sums of squares and cross-products,

-~ -~

RSS, = (Y — X3)(Y — XJ).
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Siotani et al. generalize the C, criterion to m responses as

»_ e

‘.

-
®

Ct = tr[i—l RSS,. + 2mp — Km,

5

-

where ¥ is as given in (2.6.4). They generalize AIC as
.o RSS

AIC™ = K-log| KP | + 2mp.

‘-_,:
S
"' To extend the forward selection technique, Siotani et al. suggest a
",,. generalization of the F-test using the Wilks \ statistic. Let
L4
o IRS.S'p_1 l
iy K = —
" b |RSSP |
b
i “-
w8
{
k..
N in this case p-1 variables have been selected and the pth variable is being
'_:'.:'_: considered as a candidate for entry. If the pth variable affords a significant
(j reduction in generalized residual variance then it will enter the model.
~)-
.‘_-‘_. Testing for nonsignificant reduction in generalized residual variance is
::;:: equivalent to testing Hy: 3, = 0. Under H,,
.‘ K_.p —-m 1 - ‘I\P
O Fm,K—p -m>
m A
v P
2
2 so once again we perform F-tests on candidates for entry. If the candidate
'\':- enters, we choose the next candidate by finding that predictor that, along
v with the p variables currently in the model, minimizes | RSS, |.
“;\.
T
s
~
N
o,
T
04 !
o \
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P
i:: McKay (1977) extends Aitkin’s (1974) R®-adequacy procedure to the
.
* multiresponse case. He explores the regressions between predictors and
'_::: subsets of responses. This is an interesting approach, in that it allows one to
\ think in terms of candidate responses as well as candidate predictors.
o McKay proposes several procedures, the most intuitive being a likelihood
'{\ ratio-based simultaneous testing procedure. In this procedure selection is
- based on the squared canonical correlations between response and predictor
b subsets. This methodology, as well as those procedures due to Aitkin, are
_f:-: applications of the simultaneous test procedures offered by Gabriel (1969).
p
ufi‘ McKay reasons that the amount of information about the variation in a
L set of responses provided by a set of predictors is reflected in their squared
‘!

«

o canonical correlations. He shows that any subset of predictors can contain
-
\j the same amount of information as the full set if and only if the slope

-
LS

coefficients of the deleted variables are zero. Let Y , X be jointly distributed

1’1"!“

,

- as

-

"_: ) i)

K- Y Y Yy 2yx

) ~N,,

X m+Q /‘XJ ’ Efx‘y A !

e

»"‘ further partition X' =(X'y X)), Y=(Y', Y',), where flUg=s |,
—

" s =1,..,m and vUw =u , u = 1,,,,Q . This partitioning is arbitrary in
-~ the sense that we allow any pair of subsets to be represented. McKay's
':.' strategy is to apply one of Gabriel's simultaneous testing procedures to
f hypotheses of the form w,: J,; = 0 and of the form w,;, =0, where w,, s
N
K refers to a hypothesis in which the .7 matrix has already had those columns
o
P
i
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o
&

®
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corresponding fo the partition g seroed ont. To get a simultaneous test with
predetermined Type [ family error rate, we test all such hypotheses versus
the same criticai value.  The eritical value arises from the “overall”
hypothesis, that s that there does not exist a multivariate linear regression

between Y and X. A likeiihood ratio-based simultaneous testing procedure is

based on statistics of the following form,

1 - U
W = BT
When the hypothesis is w,,,
'S, —S..57ts,, |
| M vs~ss “sv
U, = 5] )
| My

where S,,, for instance, is the sample covariance matrix of the v responses.

When the hypothesis is w,, ¢,

’va - Svs Ss;lssv ‘

p—v __l .
| Sy — Sur S7r Sy

Uvg-f

We reject w,, when U, ; > Wy, qx-q-1» Where Wy qax_g-1 is the -

percentage point of the distribution of a random variable distributed as

__lc
|G +H|’

where G is distributed as a Wishart distribution with K—@Q —1 degrees of
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freedom, H is distributed as a Wishart distribution with Q degrees of freedom

and G and H are independent. McKay defines --adequate subsets of

»
o
vy e

predictors  (X;) for the subset of responses (X,) as those

'.h '-
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X ‘Yf: ng < ’LU;,IQ,K_Q_I.
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CHAPTER 3

CONTROL VARIATE SELECTION CRITERIA

In this chapter we derive control variate selection criteria for two cases.

First, we derive a criterion for the case when the covariance matrix of the

controls is estimated. Next, we develop a new estimator that directly

incorporates the use of a known covariance matrix for the controls. Finally,

we present a selection criterion based on the new estimator.

3.1 A Selection Criterion When the Covariance Matrix of the

Controls is Estimated

In this section we derive a criterion for use in the selection of control
variates when the object is the immediate construction of confidence regions
. about the mean vector of responses. We demonstrate that this criterion acts

as a multivariate extension of the univariate selection criterion, S,

Our objective is the immediate construction of controlled confidence
S regions. We use the word “immediate” to mean that we use only the data at
hand, we do not make additional replications. It seems reasonable to pick
that subset of controls which yields a confidence region of minimum expected
volume. However, for mathematical efficacy, it is more convenient to consider

minimizing the expected squared volume of the confidence region.
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e First, we will consider the case of a single response and show how the
the appropriate criterion is a modified form of the S, criterion. In the section

N following, we extend the criterion to multiple responses.

) 3.1.1 Univariate Response

:_::._ In one dimension, the squared volume of the confidence region reduces to
-2 the squared width of the usual controlled confidence interval. Let W/
correspond to the optimal width of a confidence interval constructed from

J<@ controls with a signifcance level a. We seek to find that subset of size

Shb5S,
Ay Y

j such that we minimize the expected squared length of the confidence

interval: in symbols

[

Py
." :’ :' -"J "ata

min, E[(wg‘f]. (3.1.1.1)

A PR
o ". _."::5' v,
Z
p<
S

I )

“l‘

(WQJ)2 = 4t}%_]-_1 (1—0,/2)512{311}, (3.1.1.2)

EO

‘l

o
»

B
Y

.

0
.

as developed in (2.2.39). We wish to compute

WA N A

3 a

W

Pl A A

1’1._| .
:

2

5}’{311}] (3.1.1.3)
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(3.1.1.4)
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( by the arguments of (2.2.33) to (2.2.39)). Now, equation (2.2.30) gives
. var(Y (o)) = — | —— 3.1.1.5
8 w(FO) = £ | 7o (3.1.1.5)
\
:'. If we estimate o2 by
‘-},
- ~,  SSE, (5.6
y ol = ——, 1.1
e )
- then some algebra and recognition of those terms that are constant across all
‘, subsets yields a selection rule of
=
R in; tA_._ (1—a/2) 55, (3.1.1.7)
T min; tg_,_;(1—x : : y
& R (K—j—1)(K—j-2)
( -
but
o SSE; s 3 9
. - - = Jd.1.
_, (K—j-1)(K—j-2) 7
3
2 (actually S, is S, but we use p for the dimensionality of Y). The selection
L~
P rule is
-~ min, tg_;_; (1—a/2)S,. (3.1.1.9)
v,
-
- We note that if K >> j then the criterion reduces to Sp -
v
>
\
5
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q
]
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3.1.2 Multivariate Response

To extend this procedure to p responses, we seek the subset which yields
the minimum expected squared volume of the confidence region. Rao (1967)

gives, under the multivariate normal assumption, the 100(1—2)% confidence

ellipsoid for uy,
P (V(3)—uy) £ 1 x(¥(3) =) < (d'4)CoF, g-qp(1—) [ = 1=1,

(3.1.2.1)

where

Co=[(K-Q-1)p/(K—Q—p)]

and

d' =1k /K — (X—ux)(G'G)"'a/, (3.1.2.2)

where G is defined in (2.4.25) and 1 is a K-dimensional column vector of

ones. Also we have

K-1

vix = K—Q—1

(Syy—=SyxSxxSxy)- (3.1.2.3)

Let (V,}')2 denote the squared volume of the confidence region constructed

with j<@ controls at significance level &. We seek to compute

min; E(V})2. 3.1.2.4
j

e e m . . e .
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D
; now, it can be shown that the volume of Rao's

o p(K—j=1)
{": Let T, = { K—j—-l

K—j)—p

- ellipsoid is given by

2 - ) 2 P .
<. (Va])z =Pp 2ch(p)|\’—‘Y1de ‘T pK Jj- p(l ‘)‘) ’ (3'1'2'0)

' where C%(p) is given by (2.4.13). Rubinstein and Marcus (1985), pg. 675,

calculate the expected value of | Xy yx(d'd)| as

S | Sy ;xlca, (3.2.1.6)

where

3
il
I~
}T
|
+
e

] LE(m=1) (3.1.2.7)
m=1

D) for0 < K—j—2p. So

E|viF] =7 C%0) Sy x|, [Fy kojmp 1=0) [ (3129

and p is fixed for all subsets, hence we seek

K—j—1|
) TS c —_
s mun, \ Y|X| 3[K—j—p

(Fogmsmpi=0) [ (30:29)
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1=1
where v; = rank (Xyyx). Now, [Eyy | is not a function of j; and noting this

and replacing the canonical correlations with estimates we get a criterion of

K—j—-1 p -
C [ K—j_p(1=0) (1—p2. (3.1.2.11)
: K —J=p sl ,I;Il ) '

3.2 A Selection Criterion When the Covariance Matrix of the

Controls is Known

Situations arise in discrete event simulation where the covariance matrix
of control variates is either known a priori or can be computed with relative
ease. Several authors have suggested such controls for the class of closed
queueing networks studied by Lavenberg et al. (1982). Wilson and Pritsker
(198‘a,b) and Venkatraman (1983) propose standardized control variables for
these systems. In addition to having an asymptotically known mean, the
controls offered by Wilson and Pritsker also have an asymptotically known
covariance matrix. Venkatraman's controls have a mean vector known
exactly with a covariance matrix that is also known asymptotically. In
Chapter 4 of this research, we offer a new class of controls for which both the

mean vector and covariance matrix are known asymptotically. To emphasize

-
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the potential diversity of situations where the covariance matrix is known,
we cite the so-called “path” controls offered by Venkatraman and Wilson
(1985). These controls arise in the simulation of stochastic activity networks.
We believe that there is a large class of simulated systems for which such

controls can be developed.

In this section we develop a controlled estimator Y(~) that directly
incorporates the known covariance matrix of the controls. We derive its

various properties and develop a selection criterion based on this estimator.

3.2.1 The Estimator }7(:,)

In Section 2.4 we introduced the estimator

Y(3) =Y - 3(X~ux) , (3.2.1.1)

where J = SyySyy. Here, as in Section 2.4, Y is a px1 vector of responses,
J is the estimated px@Q matrix of control coefficients and X is a @ x1 vector

of controls with mean vector uyx. In this section we will introduce the

estimator
YY) =Y - v(X—ux) (3.2.1.2)
where
v = Syy Sk (3.2.1.3)
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This estimator incorporates a known covariance matrix, Yy, for the

controls.

-~

Provided that the responses and controls are jointly normal, Y(~) is an
unbiased estimator for 1y. To show this we write Y(~) as a linear

combination of the K observed responses. Let

.
(X, - X)

G = : (3.2.1.4)

(X — X'

and define

H=K"1; - (K-1)'GE(X—ix) . (3.2.1.5)

-

We observe

lK’G = 0, 1KIH = 1, [YI’ Ty, YK]G = (K—I)SYX ’ (3.2.16)

and so we write

A~

Y(~) = [Yl, IR YK]H : (3.2.1.7

Now, define Z = vec X = vec (X, -, Xyg) so that Z is tae Ku

dimensional column vector forined by stacking the Q-dimensionn

Y

{XJ} one upon another. Now, the condition J\ =

T S Ce
MRS - LS s -,
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compactly expressed as Z = z. Also, define uy = vec (1x ®uy). We have

E[-Y(’;)] = Ex [Ey [ vec YH|Z = z]] (3.2.1.8)

= Ey [(ﬁ’@Ip)Ey [ vec Y|Z = z”

Now, assuming joint normality of the responses and controls, we have

= Ey [(ﬁ'@lp) [(1K Suy) + (Ix ®Tyx Zxx)(Z — uz)”

= Eyx [(1 Buy) + (' Oy Tix)(2 — uz)]

= Ex [#y + (B'®TyxZxk)Z — (H'®yxTix)(1k ®ux)]

= Ex [/"Y + (Syx Sk XH) — (1 ®ZYXZ)—OI{P‘X)]

= py + Ex(Syx Sk XH) — (SyxSiktx)

= uy + SyxZxxEx [Xﬁ] - CyxExxix)
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i = uy + ZyxZxxEx [i - (K —1)—1XGZJ_01((3_(—MX)] — (ZyxZxxtx)

= uy + Ex [Sxxzﬁ'(i—ux)] ,

#’x and under the assumption of multivariate normality, we have
R = Ex [SXXE)_OIE]EX [(}—C—Hx)] =
b Ex [sﬂzﬁ(i—ux)] =0 (3.2.1.9)

“\:' since Syy is independent of X in this case. Hence the estimator, ‘_[(%), is

unbiased. The covariance of ?(%) is given by

22

K+@Q -1

_Q+1
K(K-1) ]Z” X+

cov [?ﬁ)] = K(K—1)

Z:Y)( ZJE)I( Z:XY

S

"
.

(3.2.1.10)

-

N

“an
-
»

The derivation of (3.2.1.10) is Appendix 1. Algebraic manipulation of the

[8

T

above reveals

oo

4L

i o2 K+@ -1 K—-2 «_ -
cor [¥65)] - Sy B [’” T Kg1 T rEE |

: (3.2.1.11)
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hence the variance ratio is given by

, e = det(cov(¥(3))
vl 2 det(cov(Y))

(3.2.1.12)

t=1

K+9—1[ v K—2
1 - —2=2 2| 3.2.1.13
K—1 ]VH[ K+Q—1p‘] ( )

where v = rank Xyx. Let p» be the smallest canonical correlation, then

B
P
i:: s < | EE2=1 l—ﬂpzu (3.2.1.14)
o 2 K—1 K+Q-1""] " -
.
>
N
\_1' Now if v = p, a resonable condition corresponding to well-picked responses
29
S and at least p well-picked controls, then the right hand side of (3.2.1.14) can
:‘%‘ be shown to be less than 1 (see Appendix 2) if
L)
[}
:.'\ 1/2
& pe > [j—] (3.2.1.15)
J K-2
o
g
[ 4,0
101
b3
- We have shown that it is possible to achieve a reduction in the
1..’ -— A i
o generalized variance using Y(7y) as an estimator. However, for Y(7) to be of
-
: practical significance we require it to reduce the generalized variance relative
o A _ - _ A
* to its competitor Y(8). To contrast the estimators Y(v) and Y (.3), we form
e the ratio
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Using mathematical induction and assuming that v = p (see Appendix 3), we

can show

(K+Q ~1)(K—Q —2)

-1
. (K~1)(K—2) .
(K+Q-1)(K~@-2) || _K—2 | _
(K—1)(K~2) K+Q—1

(3.2.1.17)

We have shown, subject to conditions on the canonical correlations, that
reduction in the generalized variance of the estimator is possible. The next

step is to create a 100(1—a)% confidence region based on ?ﬁ)

We construct a 100(1—a)% confidence region based on the following

considerations. We assume

?(';') ~ Np (:uYy i) ’ (3'2'1‘18)

where L is given by (3.2.1.10). Let 5 be an estimator of §, further; assume

(n—Q)f: ~wW,(n-Q , &), (3.2.1.19)
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0

where ’wp(n -Q , i) is a random matrix distributed as Wishart with n—@Q
degrees of freedom and expected matrix i; here n = K—1. Now if ?(’;) is

independent of S and we define

T? = (F(3)—uy) £ T —bv) (3.2.1.20)

we can show (see Muirhead (1982), Theorem 3.2.13, pg. 98)

T? K-Q-p
K—-Q—1 P ~ Lp K-p-@Q 1

(3.2.1.21)

where Fj, g_,_o is a random variable distributed as a central F with p and

K~—p—Q degrees of freedom respectively. We can form a confidence region

based on
Pr{(?(%)—uy)'i-‘(?ﬁ)—uy) < CoF, ,K_Q-,(l—a)}= 1-a,

(3.2.1.22)

where

Co =[(K-Q-1)p /(K—Q —p)]
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q
9
i
§
s 3.2.2 A Selection Criterion
j As in the previous section, our objective is the immediate construction of
p
: controlled confidence regions. Again, we will seek that subset of controls
2 that yields a confidence region of minimum expected squared volume.
1 Expression (3.2.1.22) is used to construct the 100(1—a)% confidence ellipsoid
K,
. for uy. Let (VJ)? correspond to the optimal squared volume of the
.
W confidence region constructed with j < @ controls at significance level a.
N We seek
L]
: min; E(V])Z. (3.2.2.1)
4
[ ‘ .
_ Let 7; = [E%'Ll)']p, now, it can be shown that the squared volume of
b —J—p
.‘ this ellipsoid is given by
g (VI =p72C¥p)| L] 7, [F,,K_j_pu—a)]’, (3.2.2.2)
.
‘ ~

where C(p) is given by (2.4.13). Assume (K—1—j)X; ~ W,(K—1-j, 5).
j Here ij depends on the subset of j controls. Using Theorem 3.2.15 of
g A~
S Muirhead (1982), we calculate the expected value of |X;] as
- |2;1Cy s (3.2.2.3)
.

where
- P K—7—1
' ComlyTia
s i=1 A TIT
\
K,
K
4
\0
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for K—7—1 > 0. So

E [(vc{)z] =p72C*p)|E;|C 1) [Fp ,K_,-_p(1—a)]’, (3.2.2.4)

and since p is fixed for all j, we seek

s | LYISN) SR PPE

We do not know ij so we estimate it as

Kty s _J+HL [g _s ] 3.9.9.6
K(K—l)] vix R E- | Py T orix). (3226)
where
& K-1 -
Ly|x = Kyl [Sry — SyxSxtSxy | (3.2.2.7)
and
Svr = Syy (3.2.2.8)

where Syy is defined in equation (2.4.17).
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:;t CHAPTER 4

Y

" IMPLEMENTATION OF THE SELECTION CRITERIA

4 IN QUEUEING NETWORK SIMULATION

‘x‘

~

\

A
)
'G In this chapter we discuss the evaluation portion of the research. First,
. we describe a class of closed queueing networks that were used as the
p>

experimental vehicles of this research. Then, we describe an experimental
N procedure in which a series of simulation metaexperiments were carried out
< to evaluate the performance of the multivariate selection criteria. Here we
\
" discuss the system responses investigated and the candidate controls. Next,
v

: we discuss the the performance measures employed. Finally, we discuss the
-.' methodology used to obtain the optimal subset of controls in each basic

\

experiment.
5
5

4.1 Description of the Simulated Queueing Networks

S

We chose four different queueing systems as experimental vehicles.

,‘. These queueing systems were suggested by Lavenberg et al. (1982). These
< systems are members of a broad class of closed queueing networks. There
5 are several major advantages to choosing such systems. The first major
-_’: advantage lies in the fact that these systems have been studied extensively
",. and workable controls have been developed by several authors. Lavenberg et
"

al. (1982) have developed a set of control variables that, in the univariate
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response case, have produced significant variance reductions. Wilson and
Pritsker (1984a, b) show how to modify these controls to insure asymptotic
stability. Venkatraman (1983) offers a standardization scheme for one subset
of the controls of Lavenberg et al. Another advantage in using these
networks is that they are representative of a class of queueing systems which
are frequently analyzed in computer performance modeling. Finally, the two
simpler networks we employ have a steady-state behavior which can obtained

analytically. This information was of great value for validation.

As outlined in Lavenberg et al.,, the queueing systems considered take
the following form. Consider a finite set (say of size S) of interconnected
service centers. These centers service D different types of customers. There

are a total of N customers of all types. Assume

1. Markovian routing so that the next station visited only depends on the

current location.

2.  The service times for the the j** type of customer at the :**

service
station are drawn independently from a given distribution F,;(*) with

finite mean and variance.

3. Scrvice time sequences and sequences of centers visited are mutually

independent.

There are two basic types of networks to be considered in this general
setting. Figure 1 portrays the form of the first type of simulated network.
Service center 1 has N servers, where N is the total number of customers of

all types. We can think of this service center as a room filled with N

interactive computer terminals. The service centers labeled 2, - - -, S are
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Figure 1. Type I Network
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single server queues with the customers being served in order of arrival. We
can think of service center 2 as a central processing unit (CPU) with service
centers 3, * + -, S as peripheral devices to be accessed by the CPU. The S by
S transition matrix that characterizes the flow of customers in the network

has the form

0 1 0 0 0

pi(d) 0 py(d) ps(d) ps(d)
0 1 0 0 0
0 1 0 0 0

PA)=1 0 1 0o o 0

0 1 0 0 0
0 1 0 0 0

| 0 1 O 0 0

where pi(d) k =1, - - -, S is the one step transition probability from service

center 2 to the remaining centers (for a customer of type d). In this type of
network we have made the implicit assumption that every customer that
requests service from the CPU is immediately granted his requisite memory
allocation. In real world interactive computing enviroments, customers often
must queue for memory at the CPU. This blocking effect due to memory

limitations of the CPU is modelled by the next type of network.

We refer to this second class of systems as networks with subnetwork
capacity constraints. The CPU and associated peripherals are the
subnetwork. A network of this type is portrayed in Figure 2. The dotted
line encloses the subnetwork. Service center 2 is now merely a queue for the

subnetwork with capacity N’ < N customers. There is no service time

associated with service center 2.
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Figure 2. Type II Network

Cd
TN

1

et N

L R A e NN N e AN A '.‘»"»‘..\ﬁ
R S A B S S I A R S SASRR L L R o

,\"l ,I.Q 'S .
O, [ JARENA



. . . _ _ o ‘_'.v-"---w—‘—wv'v'v-\-T
18]
AR

Y 89

5. il .
; ;f_x.j In this case the S by S transition matrix takes the form
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In our experiments we chose 4 networks from Lavenberg et al. (1982).
Two of the networks were of the first general type, i.e., no subnetwork
capacity constraints. The other two networks had subnetwork capacity

: : constraints. The networks are parameterized in the tables below.
L}

- Table 4.1 Parameters of Queueing Systems Used
) f.'.\ in the Experimental Evaluation

‘ Network N Subnetwork S
%
No. No. customers Capacity Number of

N N' Service Centers

> 1 25 25 4
' 2 15 15 4

N 3 25 5 7
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Table 4.2 Mean Service Times for the Queueing

Systems Used in the Experimental Evaluation
Network
No. Service Center Number
1 2 3 4 5 6 7

1 100 | 1 694 | 6.25 — — —
2 100 1 2.78 | 25.0 — - —
3 100 | — 1 2.78 | 2.78 25 25
4 100 - 1 2.78 2.78 25 25

Table 4.3 Branching Probabilities for the Queueing
Systems Used in the Experimental Evaluation
Network || Probability of Branching from Central Server
No. To Station j
1 2 3 4 5 6 7
1 2 0 72 .08 - - -
2 2 0 72 .08 — - -
3 2 0 0 .36 .36 .04 .04
4 2 0 0 36 .36 04 04
L
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We chose the first two networks because Lavenberg et al. presented detailed
results of their experiments using these two networks. Also, these two
simpler networks display a steady state behavior that can be obtained
analytically. Results for the networks 3 and 4 were presented in Lavenberg,

Moeller, and Welch (1979).

4.2 Layout of the Simulation Experiments

In this section we discuss elements of the experimental layout. First, we
briefly describe the relationship of our basic experiment to an overall
metaexperiment. In the next section, we discuss the selected system
responses. Following that, we list the selected control variables. Finally, we

discuss the selected performance measures.

4.2.1. Composition of the Metaexperiments

A basic experiment consisted of a set number of independent replications
of the simulation model. We chose two replication levels, 20 and 40. Within
a basic experiment a selection procedure was employed to obtain the ‘‘best’
subset of controls. We discuss the selection procedure in a later section. An
overall metaexperiment was conducted for each network. This meta-
experiment consisted of 50 independent replications of the basic experiment.

Therefore, when the replication level of a basic experiment was 40, we ran

40x50 = 2000 independent replications of the basic experiment.
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#
l‘}' 4.2.2. Selected System Responses

N We elected to look at a two dimensional response across all the models.

'

-'$-I

:.:'f We were interested in the response vector [R(t), Ucpy(t) | where R(t) is the
~

mean response time for a system request accumulated up to simulated time t

and Ucpy(t) is the utilization of the CPU accumulated up to simulated time

N
)
:n. t. These responses seem to make good sense from both a system and
‘\y.‘
NS . . . . . .
customer viewpoint. The customer is most interested in the response time of
oS the system and the system adminstrator is probably most concerned with the
."
-
j:'. utilization on the CPU, since it is probably by far the most expensive
\-
O
A component of his system.
i
:.-':‘:
M 4.2.3. Selected Control Variables
>l
w‘._-{
O We considered, as candidates, modifed versions of the control variables
Ao 4
::.2 proposed by Lavenberg et al. (1982), as well as as new control of our own
B
SE . . . .
::.. design. These control variables can be classified into three basic types: 1)
&
¥
* service time variables, 2) flow variables, and 3) work variables. All of these
g . :
) variables are collected at each service center for each customer type. In the
. ..-I"
WA . . .
o form suggested by Lavenberg et al., service time variables are the sample
YA
: mean service times. Flow variables are the sample proportion of departures
}'-‘:,; from particular centers relative to the total number of departures from all
.
4.4 . c .
;.:4 centers. Work variables are the product of the service time variables and the
]
"‘:' N
s, flow variables.
o
e Lavenberg et al. calculated the asymptotic means for these controls. In
b,
;;’_ their analysis, they assumed that the run lengths of their models were
_ sufficient to warrant the use of the asymptotic means. We chose to use
A S
oY
Sy
e,
.r\
-
d.
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‘“standardized” forms of the service and work variables of Lavenberg et al.
We developed a standardized flow-type variable based on the multinomial
routing of each network. We used ‘‘standardized’ controls in an effort to

avoid numerical difficulties that result from unit of measurement differences.

We considered, as candidates, service time variables of the type
proposed by Venkatraman (1983). For service center j and customer type d,

define

10 9(1.8:t)
X;4(t) =) % (Uja, i (d) = 154)/054 »
(=1

where: ¢g(Jj, d; t) is the number of service times started at station j for
customer class d during the simulated interval (0, t] ( here 0 marks the start

lth

of the statistics collection period ); and U,y ;, is the service time

sampled at station j for customer class d, where E(U,; ; ) =p;4 and

va.r(UJ-'d', ) = U‘?,d'

Venkatraman (1983) shows that

EX(t) =0v¢ >0

where

and since
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D
X(t) 1\"(0, a)
L =2
where L _, signifies convergence in distribution and
t —C
a = diag(ay, * * *, )

and

a; = (Steady-state utilization of station k)/u;

(note that we have dropped the customer ciass distinction). Venkatraman

provides guidance for the computation of «.

Among the candidate control variables are versions of the work variables
due to Lavenberg et al. that have been suitably ‘“‘standardized’ as proposed
by Wilson and Pritsker (1984a, b) (see equation 2.2.48). This class of
controls are attractive because the vector of q standardized work variables

converges to a g-variate normal distribution with a zero mean vector and

unit dispersion matrix:
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4.2.4 Routing Control Variables

The moments of the flow variables proposed by Lavenberg et al. are in
general unknown. Hence, we were not able to standardize these variables. We
discarded these controls as candidates in favor of a standardized multinomial

control. We call these new controls, ‘‘routing variables’'.

All routing in the networks we considered is done from the CPU. Now

define an indicator variable on the event of the [ departure from the CPU

to station j

_ 1if the | departing customer goes to station j
Ui{5) = |0 otherwise

Now, from the discussion of the simulated networks we have p;(*) as the
probabilty of transition from the CPU to station j. If N(t) is the total

number of transitions from the CPU up to time t then

N(t)
IZ U, (5)IN(t) =n ~ B(n;p;(*)),
=]

a binomial random variable on n trials with success probability p,(*). We
consider standardized controls of the form
N(t) Ui(1) —p;(*)

R =1 V/N(t)(1 - p;(*)Pi(*) for j=1,---,8 if N(t) >0
Xi(t) = 0 if N(t)=0

Since E[X]R(t) | N(t)] = 0 for all n and for all t, we see that X]R(t) has mean

______
. eI
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T

i zero not merely asymtotically but for all times t:

5o E[XJR(t)]=O forallt > 0;

L moreover

R lim R
By var[X]-(t)|N(t)=n]=1 forn >0 = __’oovar[X~]=1.

el

¥

'.= The covariance matrix for the routing variables is given by the matrix
W

)

lim
‘. ADP =, s [cov [X]R(t),X,f(t)]hV(t)], where j and k reflect possible

1: routings from the CPU. The covariance matrix is calculated as

cov [X]}-?(t),X,fz(t)[N(t)] =

1 when 7=k , N(t)>0

| =Vp,(ee() when j#k , N(t)>0
V(I =p;("N(1 = pe(%))

_.,,...‘
Fl il

- e

0 when N(t)=0

s

(4.2.4.1)

v The derivation of (4.2.4.1) is given in Appendix 4.

.~ - -
-
-

'y

@
-
“~

A SR S R LY “w
>, o,
LM '.;.'l,h ALK

™ R s fa v m e te P r e e, At At A AT o
W ENCIN e o e,
G S Y SR S AT e

“¢ 2N \‘l‘-.v\ . e s

T O e Py R T by
L '!‘l..’!.,,l N .-~‘!' “h"'n"'t‘. NN

P87 w9 a% A% ¥



2 Sl Rl Y 8 PO o alh A e a a4 4 a o a aoa oA o2 Lok anh cah aak tel Jak el -l cal GhRet e e Adacy W‘W
P
)

e
5‘
2: 97
%
.;]':; Standardized routing variables share the same desirable asymptotic
L
‘ properties as the standardized controls proposed by Wilson and Pritsker
3 ) .
St (1984a, b). Let XB(t) = [X{i(t), vy XsR(t)] In Appendix 5 we show that
kit
Seh
" xR (1) —2 5
) (t) n Ns(01 RR)! (4.2.4.2)
¢
\"'
"
::'»é
.
W in a broad class of queueing networks that possess the regenerative property.
K. We require s=S—1. This requirement is explained in Appendix 5.
o
o
R 4.2.5 Selected Performance Measures
k]
D \ . .
\.:;',\ To assess the efficiency of using the ‘‘best” subset of controls, we
"f\
10 concentrated on two performance measures: (a) coverage and (b) volume
B
R . .
" reduction. Coverage was computed, across a metaexperiment, as the actual
o
;;f proportion of generated confidence ellipsoids that contain the true mean
~'
: > vector. Volume reduction was computed, across a metaexperiment, as the
] ~.
;’3 average percentage reduction in the volume of the confidence ellipsoid
f:!: generated with the ‘‘best”” subset of controls relative to the volume of the
n
' +
'& ellipsoid generated by direct simulation.
"
’
k'_'_;‘
. For experiment [, let
:::f:
<l Volume of the confidence ellipsoid
SR a .
) V, = 1generated with the best subset of
S controls,
¥ - Volume of the confidence ellipsoid
Ve =
g { generated by direct simulation,
;:;i

P e R R P S I B Y PSR R Y J P ot LA T VAR TR T LA

e e \ AT A Y
| l" .“.‘l- ‘.‘h I'c.:.r L .'!‘l'!‘l'fl't b"h'u } W, $




. L fas dat gal 3 0
0
1':
Awd
) 98
foiats
:.:éc
.'Q:I ‘
oY
UYL
O 1 if the controlled confidence ellipsoid
) ol 4 .
- P, = contains the true mean vector
[ :(\' 0 otherwise,
\.
'
P
"H 1 if the uncontrolled confidence ellipsoid
A A
. Pd = 1 contains the true mean vector
:"_-:': 0 otherwise,
'.1’.-)
P
4
A ‘ﬂ
il Across the metaexperiment we compute
vy
o
N A . 1 59 A
'\*" V = - EV l'
50
X
4
2 ‘v..
-
LS
.\(b-v
--h'
D 50 .
W v = Lo
n 00 1-1
o
10
%N -
) P =L 0B
v 50, = !
) ... [=1
iy
|"
0
)
"\
AN
(% 5d _ 1 al’ﬁd
N 50 =
o [=1
N
e
e
(N
ol so that the final performance measures are
o
S ~
. vV
- Volume Reduction (%) = |1 — 5Ty x100
)
o
o
“
L
Y
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Coverage Probabilty(%) .
. . . = P*«100
(Direct Simulation)

Coverage Probabilty(%%)
(Best Subset of Controls)

= P 'x100

When }7(3) is used, the expression used for volume reduction can be

obtained from equations 34 and 35 of Rubinstein and Marcus (1985).

Specifically
\‘;-‘ |€“ . )1/2 p/2 F (1—(1) p /2
V. _ ~Y'X (d’d)p/2 (K—Q—-1)K(K—p) pK-Q-p
VE Sy 112 (K-1)(K—-Q —p) F, x—p(1—0)

and ~hen Y (~) is used, we have

V' _ (5 (k—g-nk(k—p) |
VT Sy |V | (K=D(K-Q—p)

Fp K—Q-p (1—(1) r/z

FP,K—? (1—'0)

where all notation is as appears in Section 2.4. After some pilot
experimentation we decided to employ the standardized work variables of
Wilson 3nd Pritsker (1984a, b), as well as the standardized routing variables

proposed above.

4.3 Optimal Subset Selection Methodology

Within each basic experiment, a set number of replications of the
simulation model were performed. Response and control variable data were
collected for each replication. After the data had been collected for the last
replication within the basic experiment, a control variable selection
methodology was applied against the data. This procedure computes the

multivariate selection criterion for all possible subsets of controls and finds

o Tty 4-.1( I A PR TP S U PRI
telh o N 3 WA p L S R A Rt R _ iy A
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S the minimum. The subset corresponding to the minimum value of the
selection criterion is deemed '‘best’” or “‘optimal”. Given the optimal set of
y controls, the coverage and confidence region volume reduction measures were

. computed and tallied.

5 The selection procedure is initiated by the construction of a grand
- covariance matrix that includes the responses and the ccntrols. Next, a
D multivariate generalization of a binary search of the regression ‘‘tree’’, as
proposed by Furnival and Wilson (1974), is employed to examine all possible
subsets of controls. Finally, the procedure computes the performance

20 statistics.

As demonstrated in Sections 2.1 and 2.2, the control variate technique

s a8 @
LI
(AR
. e

L8,

can be viewed as a linear regression problem. In Section 2.1, we consider the

-\ .~l
(YR )
I_‘ \.5

case where there is one response and one control. In this case, if we assume

—

. A

joint normality for Y and X, then conditional on X=x, we have the classical

s
S i S AT N B Y
L A T B

l‘"

regression problem

A

Y =Da + ¢, (4.3.1.1)

&s

P o

Hy
where Y = (Y, "+, Yg), a= | 5 | Dis as in equation (2.1.17), K is the

&
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number of replications, ¢ = (¢, ' - -, €x) a vector of residuals such that

NN e, ~ IID N(0, %), and 3is as in equation (2.1.11).

Under the multinormal assumption, the least squares and maximium

A n'('-’ X

-
»

likelihood solution for = is given by
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We note that the only remaining unknown in the model is the variance of the

residuals. An unbiased estimator is given by

2 _ (Y =DOY(Y = Da)
' K-2

3

[t is apparent that the computational overhead necessary to completely

estimate the model of equation (4.3.1.1) lies mostly in the inversion of D'D.

When we extend the model of equation (4.3.1.1) to the case of a
univariate response with multiple controls, as well as to the case of multiple
responses with multiple controls, we see that little changes from a
computational viewpoint. In particular, for the case of a univariate response

with multiple controls, the model becomes

Y =Da + ¢, (4.3.1.2)

where Y = (Y, --,Yg) , a'=(uy,J;, -+, ), D is lescribed by
equation (2.2.35), K is the number of replications, € = (€, - - -, €x) is a

vector of residuals such that ¢; ~ IID N(0, 0{2), J; is as in equation (2.2.33).

Under the multinormal assumption, the least-squares and maximum

likelihood estimates for o and 7?2 are respectively given by

~» = (D'D)'DY .

. (Y =Dn)(Y —Dn)

K—-Q -1

4
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Seber (1977). Finally, in the case of multiple responses and multiple controls,

the model is

Y =DA +E, (4.3.1.3)
where Y = (Y(l), N Y“’)) , and YU represents K independent
observations on variable 7. Here A = (a(l), SN a(”)) and
ol?) = (u), C1C R 3(§j))’, so that A is the matrix of regression (control)

coefficients. Moreover, D is as in equation (2.1.35), K is the number of
replications, and E = (5(1), < ,e(”)) where €7 is the column vector of K
residuals for the j** variable so that each row of E is ~ IID N, (0, ) By

similiar arguments (Seber (1984)), we estimate

A = (D'D)"'D'Y . (4.3.1.4)

& (Y -=DA)(Y — DA
K—Q—1

[

For both the models given in equations (4.3.1.2) and (4.3.1.3), we car see that
the bulk of the computation involved in estimating model parameters lies in
the inversion of D'D. In the next section we discuss efficient Gaussian

elimination methods to accomplish this end.
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4.3.1 Matrix Methods

i

S In this section we discuss methods used to invert matrices of the form
"t D'D, where D is Kx@ and of column rank @. These methods are based on
;j elementary row operations. Such methods are called Geaussian elirmination
.

N methods. We will discuss the Gauss-Jordan method, the sweep operator,
:‘:: symmetric sweeping, and Gaussian elimination.

- . :

Following Kennedy and Gentle (1980), we enumerate the following

:',j elementary row operations on a matrix:

(\

o 1. Interchange two rows.

)

o 2. Multiply any row by a constant.

'. 3. Add one row to another. To effect an elementary row operation, one
can perform the operation on the identity matrix and simply premultiply
‘..v

'.:j- this new matrix on a target matrix. These altered identity matrices are
-

- often called elementary matrices. Methods based on these elementary

transformations are called Gaussian elimination methods.

-

o Chvatal (1983) presents a clear exposition of Gaussian elimination
;_ methods. He condenses the elementary operations needed to invert a matrix
into two basic matrices (a) the permutation matrix, and (b) the so-called eta
- matrix. The permutation matrix is an elementary matrix that simply
";E interchanges two rows. The eta matrix is a succession of elementary matrices
- that zero selected elements of a matrix.

e The Gauss-Jordan method of matrix inversion is based on the following
e

~ observation. Let the matrix T be the product of successive multiplications of
N

-,
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> those elementary matrices which must be applied to a square matrix D'D
(where D is A'xQ and of column rank Q) in order to reduce it to the identity

o matrix. That is, if E, is the jm elementary matrix, then, if

. T =E,... E,

b~ we have
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Now to implement this method, we merely augment D'D with Io and

13
ia &

1

e a) e,

:

apply T to both. In the notation of Kennedy and Gentle (1980),
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Beaton (1964) exploited the fact that for each column reduction of D'D

»

e
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all the columns of the identity matrix remain in the transformed (augmented)

= &
"

)
7

PN,
5. aaga 1)y

LA
-
S

o

- A
A
i

Ca® o ® g ¥ o g L W W Oy, ¢ T AN L n A TN,
SPZACY N ' . A
OO0 O OO AN B, NS Ao A

£

o M W
e

*u b ‘-'."-'-'\-“‘ M -"‘-"-'. 's'. '-.L\.“'-c\-'q"‘\\’\"“- \(-‘ s
SR < AT 'y o .

e ) &

D
-




s,
2

L‘l:’l

.
.

4

«

Ry

Rk

RS

Ny

‘)

Ty
P e
PRt T |

A

8, ¥y 2y sy tp Ay

Py
.
P
.

s
.
P
LT S P
et e e
Bata et

.o

l'.‘ '; AL AL
B bt

¢

Vo WAPY
.

v
o
P

,v
'

AR

P
A ARSI
« e ' .. ‘e Y 4

[fa
£ s M
Ay

A
.L‘L “

=
L)
P a g

EAS Y

-

g n‘ o -:'/
) .'\ D ." a

P
L]

]

!

PO
e AN M

En iy
RRE

‘L

105

matrix. Essentially, he simply replaces the newly created identity column
with its counterpart in the right hand side of the augmented matrix. This
storage innovation allows for the inversion of a matrix in its own space. The
operations which accomplish this are called sweeps. Beaton (see Seber (1977),

pp. 351) offers the sweep operators. A matrix G is said to be swept on the

k™ row and column if it has been transformed into a matrix G~ = ||g,~;-|| such
that
. 1
ek = —
Gik
. —ik .
g = ——  (i#k)
kk
Gk] .
gk] = (] %k)
Gk
, ik 9k; N
g!] gz] - - (lvj?ék)
9k

Schatzoff et al. (1968), Seber (1977), and Kennedy and Gentle (1980)
discuss the properties of the sweep operator in varying detail. A useful
result, given in Kennedy and Gentle is the following. Let G be the

augmented matrix

D'D D’Y]

G=lyp YY|

(4.3.1.5)

where D is KxQ (with column rank ) and Y is A'~p. Now, if G is swept on

the first Q rows and columns, then the resultant matrix G is

4
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K
o ) (D'D)! (D'D)”'D'Y
“‘ G = ' ! -1 ' / -1 I’ (4.3.1.6)
. -Y'D(D'D) YY - YD(D'D)" DY
et
In particular, if D and Y are *‘centered” (that is, if the sample mean of each
\ variable being subtracted from each obsevation), then
'
Y
R R
5t i (DID)—l Al
~ G = N
"_ —A RSS|
:. where A is as given in equation (4.3.1.4) and RSS is the matrix of residual
<
?:: sums and cross products.
". The matrix G, is symmetric. The symmetry of G can be exploited by
*!
oy working only on the upper triangle. This method is called the symmetric
";.j sweep. It is due to Steifel (1963) and for each pivot on matrix G, we get the
:, ) matrix G~ such that
o
:; .
- Jee =
', Tik
"f Tk = O = k9 (1 #K)
;;: 9ij =95 =gy + gz‘kgk’j (¢,7%#k)

Sweep and symmetric sweep operators produce both the regression (or

! control) coefficients and the RSS matrix. For some applications, such as our
[} e
la?
problem, there is no need to calculate all the control coefficients for every
s
; sweep. In these appli~ations, the primary interest is the RSS matrix. The
N desired result can ve obtained by applying Gaussian elimination to the
“~
) matrix G, given in equation (4.3.1.3). Seber (1977, page 304) shows the
'
{I

PaaldP i)
.

P @ A S




desired result for the case when Y is I1xK. The result for a Kxp matrix Y is
suggested by Kennedy and Gentle (1980, equation (7.21)) and is reproduced
here as equation (4.3.1.6). To prove that Gaussian elimination produces the
appropriate RSS matrix, one premultiplys the matrix G of (4.3.1.5) by the

matrix

A

T 0
-YD(D'D)™' I |

where T is the lower triangular, nonsingular matrix that reduces D'D to unit
lower diagonal. If D'D is nonsingular then the existence of T is assured, see

Seber (1977, Chapter 11).

4.3.2. Generation of All Possible Regressions

In order to implement the criteria obtained in Chapter 3, a methodology
is required to generate the needed regression information from each subset of
regressors. Several systematic procedures have been suggested. Garside
(1971), Schatzoff et al. (1968), and Furnival (1971) offer methods based on a
binary coding for each subset of regressors. Furnival and Wilson (1974) offer
algorithms which produce all possible regressions in orders they call natural,
lexicographic, and familial. These orderings are based on the systematic

search of a structure called a regression tree.

As we have seen in the previous section, Gaussian elimination and/or
sweeps (henceforth, we refer to individual eliminations as ‘‘pivots’) can
produce regression information for some subset of the regressors (controls).
We need tc generate a sequence of pivots on carefully stored matrices, such

that every possible subset of controls is considered. Following Furnival and
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Wilson (1974), we form a regression tree as follows (see Figure 3). At the
root of the tree is the original covariance matrix. At this point no variables
(regressors) have been allowed to pivot into the model. The notation 123
signifies that there are 3 candidate controls. Dark lines on the tree signify
pivots. For instance, the dark line emanating from the root signifies a pivot
on variable 1. Note that the resultant notation, after this pivot, is 23.1.
Integers after the dot signify those variables included in the model; the
variables appearing before the dot are not yet in the model. Dotted lines
represent the deletion of a variable from the model. For instance, the dotted
line emanating from the root signifies the deletion of variable 1. Note that
this deletion results in the model 23. At each node, we either pivot a variable
into the model or delete a variable from the model. These pivots and
deletions are carried out until all possible subsets of models have been
considered. Furnival and Wilson point out that this tree can be traversed in
any ‘‘biologically’ feasible order. That is, we require only that a father be
born before a son. If we search the tree horizontally from level to level, this
is the so-called natural order. Storage savings are possible if if we use the so
called lexicographic (dictionary-like) order. Furnival and Wilson also offer a
(a) binary ordering which amounts to a counting process in base two, and a
(b)familial ordering in which both horizontal and vertical elements are
combined. Table 4.4 shows the order of the regressions produced by the four
methods addressed above. Furnival and Wilson offer algorithms for each

ordering.
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Table 4.4 Sequences of Regressions

Natural | Lexicographic | Binary | Familial
1 1 1 1
2 12 2 2
3 123 12 3
4 1234 3 4
12 124 13 12
13 13 23 13
14 134 123 23
23 14 4 123
24 2 14 14
34 23 24 24

123 234 124 24

124 24 34 124
134 3 134 134
234 34 234 234
1234 4 1234 1234
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4.3.3. Multivariate Generalization of All Possible Regressions

We employed a binary search of the regression tree. This search is a
direct implemetation of the binaryv algorithm given by Furnival and Wilson
(1974, page 504). The input matrix was the sample covariance matrix of
controls and responses. At each pivot we calculated the generalized residual
variance and computed the value of the selection criterion. We emploved a
variant of Gaussian elimination (also found in Furnival and Wilson) that
exploits the symmetry of the covariance matrix bv operating only on the
upper triangle. We chose Gaussian elimination over sweeping to save on
computation of the regression cocilicients. These coeflicients are only needed

for the optimal subset.
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In this chapter we discuss the experimental portion of the research. We

-
(%"
»
.‘
Y

summarize the results of our simulation experiments and conclude the

NN chapter by discussing a few experimental excursions designed to examine the
ol
R0 . H H
W underlying assumptions of our analysis.
-
:
o 5.1 Summary of Experimental Results
)
o
,:: As mentioned in Section 4.1, we experimented with two different types of

C

closed queueing networks. For purposes of discussion, we refer to the first

~
XN type of system (no blocking at the CPU) as a type I network and the second

(RN

::.'; type (blocking at the CPU) as a type II network. Models 1 and 2 (models 4

.
9

- and 5 of Lavenberg, Moeller, and Welch (1978)) were type I models, while

Aty

o models 3 and 4 (models 15 and 16 of Lavenberg et al.) were type II models.

- All models were discrete-event simulations written in SLAM (Pritsker 1986)

.’:

2L and a FORTRAN listing of both types is given in Appendix 5. |
r"

oo One basic aim of this research is to provide a simulation practitioner
'4'_:4

,.j with a methodology whereby he can select the ‘‘best” subset of controls to
o
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use to in constructing a confidence region for the steady-state mean vector of
responses. The analysis program we developed to accomplish this end is

given in Appendix 7.

For type I networks, it is possible to obtain analytically ,the steady-state

expected values of the response vector |R(t), Ucpy(t)| . We used the

software package CAN-Q (Solberg (1980)) to calculate these values. Since it
is impossible to run our simulations to infinity, we settled for long run
lengths. For type I models, we chose a run length of 20,000 time units. For
type II models, we chose a run length of 30,000 time units. We started the
collection of statistics after 2,000 time units in an effort to minimize the
effects of initialization bias. We chose the longer run length for type II
models because of the presence of blocking at the CPU. When steady-state
expected values (uy) were not available, we used the grand mean vector of
the 2,000 replications (Y(2,000)) as the population mean. We report our
results relative to both uy and (Y(2,000)). Table 5.1 summarizes this

information for all four models.
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)
)
: Table 5.1 Mean Responses for the Queueing Systems
n Used in the Experimental Evaluation
. |
1
g Steady-State Mean Y (2,000)
v Model || R(t) Ucpu(t) R(¢) Ucpult)
: 1 36.13 918 36.04 9177
2 81.71 .413 81.14 .4128
p 3 * * 247.06 .3590
. 4 * * 85.92 6625
.
1
The candidate controls chosen for the type I networks were the four
standardized work variables (collected at all stations) and the three
\
standardized routing variables. Note that the analysis program includes a
, tolerance check on incoming variables. This check precludes multicollinearity
b problems which would result if all three routing variables were included in
the model. We chose only seven of the available control variables as
candidates for the type Il models. This was done to keep the analysis at a
K> comparable dimensionality across both types of networks. We chose as
candidates the standardized work variables for the CPU and the two busiest
. disk drives; also we used four standardized routing variables (excluding only
routing to less frequented disk drives).
)
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For each model we ran 2,000 independent replications. The first 1000
replications were used to vield 50 meta-experiments of replication size 20. All
2,000 replications were used to produce 50 metaexperiments of replication
size 40. We report (with respect to both uy and Y(2,000) ) estimated
coverage probabilities and estimated volume reductions for both estimators
(}7(3) and )7(:!)) Nominal coverage was 90%. Tables 5.2 and 5.3

summarize our experiments.

Table 5.2 Performance of the Controlled Point
and Confidence Region Estimators for K=20
Replications of the Selected Queueing Systems

Coverage Probability (%) Volume
Steady-state mean Y (2,000) Reduction (%)
Model |(7(3)  T() | 7(3) ¥(3)||T(3) T()
1 78 80 86 86 73 45
2 28 64 78 80 83 52
3 * * 82 90 61 43
4 * * 83 84 46 34
T e R e e L T ', e A £t T A T -. ]

Wyt W Ve he) .A.-fu .nl.e.. M‘”
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: Table 5.3 Performance of the Controlled Point

. and Confidence Region Estimators for K=40

E Replications of the Selected Queueing Systems
\ Coverage Probability (%) Volume
Kios Steady-state mean Y (2,000) Reduction (%)
)

Model || F(3)  T() T3 T ||T3) T
-

'-'.:.-; 1 58 76 84 88 76 61
. 2 0 36 80 94 86 69
J-f::-',

v e

o 3 * * 84 90 63 53
s 4 * * 88 86 47 41
L
A

o
N

LA

JA.J"

-

R
(

o We observe that in all cases Y () covered the steady-state mean better than

—

Y (3). Further, }7(:/) offered comparable if not superior, coverage relative to

LY, .
LAl
.
A, & & A Ny Yy
At T

}7(3) when Y(2,000) is taken as the target mean. This improvement in

reliability is probably due to the conservatism of }_’(:r) to )7(3) as reflected in

the realized volume reductions.
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S A
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:‘_:::‘: 5.2 Examination of the Assumptions Underlying the Application of

- Control Variables

» *.

\\'4_

_..-::'.-: Two major assumptions come into play as one applies the estimators

o A _ -

Dl Y(J) and Y (7). Confidence interval procedures for both estimators are based

. . on the assumption of joint normality between the responses and the controls.

R

- The confidence interval procedure based on Y(~) assumes that the mean

:::::: vector and dispersion matrix of controls is known. In the case of the controls
we applied, these quantities are known only asymptotically. We also assumed

O

'“\‘ that the runs were of sufficient length that the response vector could be

._".-‘_:: assumed to be in steady-state.

'“:,_

Q N

:f_ We carried out three excursions from the primary analysis to gauge the

\_._.:: effects of the underlying assumptions. We hoped these experiments would

A

e shed some light on the sensitivity of the procedures to the underlying

N assumptions. First, we looked at the situation where the responses and

igs

f:: controls were distributed as jointly normal random variables with all means

b

::\f and covariances known exactly. We calculated the sample covariance matrix

14

e of responses and controls for 2,000 replications of model 2 (chosen

::'::: arbitrarily). We took this covariance matrix to be the population covariance
l-.-‘

::::-: matrix of responses and controls. Next, we generated 2,000 independent,

43 AN

*"" normally distributed random vectors based on this structure. We repeated

’ our basic analysis for replication sizes of 20 and 40. In this experiment the

T

oy means of the responses as well as the controls are known exactly. The
y results are Table 5.4
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Table 5.4 Performance of the Controlled Point and Confidence
Region Estimators when Multivariate Normality is Ensured

Coverage Volume

Probability (%) Reduction (%)

Replications 7(3) }-’(:*) ?(3) )7(”7)
20 89 g3 81 50
40 92 94 85 69

We observe that under ideal conditions both estimators deliver nominal
coverage and Y(~) is more conservative. We feel that the results above

validate Y () as a viable estimator.

Next, we wanted to see if we could determine whether it was the lack of
normality in the responses or insufficient run lengths which degraded
estimator perfromance in the actual simulations. To accomplish this end, we
applied normalizing transformations (Box, Hunter, and Hunter (1978), and
(Anderson and Mclean (1974)) in an effort to make the data appear more
normally distributed. We took the natural logarithm of the response times
and applied the transformation z = aresin (\/Ucpy(t)) to the CPU
utilizations. The results are Table 5.5. Coverage is relative to the grand

average of the 2,000 transformed response vectors (¥ ,(2,000)) .
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Table 5.5 Performance of the Controlled Point and Confidence
Region Estimators Under Normalizing Transformations
of Queueing Simulation Responses
Coverage Volume
Probability (%) Reduction (%)
Y ,(2,000)
Replications || ¥(3) 7(9) 7(3) 7 (7)
20 84 85 82 51
40 74 90 86 70

Comparing Tables 5.3 and 5.4 to Table 5.5, we see that there seems to be an

indication that 7(:\;) is less sensitive to departures from normality than 7(3)

Finally, we were interested in the effects of run length. We contrast the
performance measures at run lengths of 5,000 and 20,000 time units,

respectively. The results are Table 5.6. The replication level is 20.
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Table 5.6 Performance of the Controlled Point and Confidence
Region Estimators for Queueing Simulations of Different Run Lengths
Coverage Probability (%) Volume
Steady-state mean Y (2,000) Reduction (%)
Run Length || ¥(3) ¥9) Y3 T ||FG) T
5000 18 33 90 92 57 39
30000 28 64 78 80 83 52

We observe that the increase in run length yields improvements in the
coverage of the steady-state mean vector for both estimators. We also
observe a degradation in coverage about Y (2,000) when the run length is
increased. Volume reductions appear to be significantly larger for the long

runs.
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CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS

8.1 Overview

This research offers a solution to the general problem of optimal
selection of control variates. We offer solutions for two different cases of the
general problem: (a) when the covariance matrix of the controls is unknown,
and (b) when the covariance matrix of the controls is known and is
incorporated into point and confidence region estimators. For the second
case we introduce a new estimator that we represent by the symbol }7(':)
Under the assumption that the responses and the controls are jointly normal,
we have established the unbiasness of this new estimator, and we have
derived its dispersion matrix. We have implemented a selection algorithm
which locates the optimal subset of controls. The algorithm is based on
criteria we derive for the two cases listed above. We have introduced a new
class of controls which we call ‘‘routing wvariables’”. We derived the
asymptotic distribution of these controls as well as their asymptotic mean
and variance. Finally, we have investigated the performance of the selection

algorithm and we have contrasted the estimators }7(3) and }7(;,;)
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8.2 Conclusions

We conclude that the selection algorithm delivers a workable set of
controls that yield minimum expected squared volume. Under ideal
conditions, confidence region procedures based on both estimators deliver
nominal coverage and significant volume reduction. The estimator }_’(:)

appears to be more conservative. The conservatism of Y (~) greatly enhances

its reliability when the underlying assumptions are violated.

Routing variables prove to be a significant new class of controls
variables, in that they entered every model fitted during the course of the
analysis. They are easy to implement and should be considered as candidate

controls in any simulation that contains probabilistic branching.

8.3 Recommendations

There are several avenues of potential future research that present

themselves.

1. In the case where the covariance matrix of the controls is known, we
offer an unbiased estimate of the dispersion matrix of Y (v) which we

call £. The theoretical properties of £ have vet to be established. It

would also be of interest to investigate other estimators of s

2. We employed a ‘“‘all-regressions’’ approach to find the optimal subset of
controls. Generalization of a search scheme that avoids total
enumeration of the subsets would be wuseful. A multivariate
generalization of the branch and bound algorithm suggested by Furnival

and Wilson (1974) is immediately suggested.
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structure and risk adversion of the decision maker would be of interest.
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Appendix 1: Derivation of Equation (3.2.1.10)

Now, define Z = vec X = vec (X, - .Xg) so that Z is the (KQ)

dimensional column vector formed by stacking the K X, one upon another.

Now, the condition {XJ =1z } can be more compactly expressed as Z =z

Also, define uy; = vec (1x®uy). Write

il

() = [Yl. e ,YK]E'I YH (A.1.1)

and

vec Y(~) = vec (YH) = (H'S ) vec Y . (A.1.2)

Now
cov| vec YH| = Ey [cov [ vec YH|Z = z” + cov [E[ vec YH|Z = z]]

(A.1.3)

Examining the first term of the right hand side of equation (A.1.3)
Ey [cov [ vec Yﬁ\ Z= z]] = Ey [cov [(fl"glp) vec Y|2Z = z”

(A.1.4)
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= By [(E®h Jeov | vee Y| 2 = 2|1,y | (A.15)
= By | (B9, )k SEy x)(H'21, ) (A.16)
= By [(9S, y)(E,) | (A.17)
= By (S, )| = Sy By | (A.1.8)
Now
HH = K7+ (K1) R SRS Sk &) | (AL9)

E [f{'ﬁ] =K'+ E [tr(K—l)_](i—ux)’ZﬁSHZ&(i—ux)] (A.1.10)

by the properties of the trace (tr). Now

E [ tr(K 1) (i S o Stk (R = (A111)
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(K-1)" [E (R Ttk S Sk R || = (A.1.12)

(K—1)"14r [E [(i—ux)(i—ux)'zasﬂzﬁ]] _ (A.1.13)

_ _ 1

(K—-1)"'tr |E [(X—ux)(X—-ux)’]ZﬁE [Sxx ]ZE(J (A.1.14)

(K(K-1))"ttr [Zﬂzﬁzng(] = (A.1.15)

(K(K—1))""tr [IQ ] = (K(K-1))"'Q . (A.1.16)

so algebra shows that (A.1.8) (hence (A.1.4)) becomes
~ ~ K+@Q -1 !
ZY]XEX [H’H] = ﬁ&qx (A.1.17) i
|
Next, we examine the second term of the right hand side of (A.1.3) :
cov [E[ vec YH|Z = z]] = cov [E [(ﬁ’@Ip) vec Y|Z = z]] =
(A.1.18)

A N e T T VN S i R A S R -.:.‘\"'_\' .
B N O N, R LD R AN AT AN RN SN

<




L) — il
‘.‘.,’ [N

#-ln‘-'l' ot

<00
v e

5 O3

v Ay % 3
P

J

et Sl 1
LR
L I 3

a

ol
L
AU

Equation (3.2.18) allows

cov [(ﬁ’@lp )E[ vec Y|Z = zH =

cov | (B91,) [(Le8ur) + (@ SRE — )]

Now, as a direct result of equation (3.2.1.9)

ZYXzE&(COV [ vec Xﬁ])ZﬁZXY .

Now

E(XH(XH)) — E(XH)E(XH) =

R R I OCSCOLATE T il SN A e W B
4 a Lok A H Ma b o 3 n. 0 el

cov [ vec (EYXZ)'QI(Xﬁ)] =

cov( vec XH) = cov(XH)

E(XHHEX') — E(XH)E (XH) .

-----
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(A.1.19)

(A.1.20)

(A.1.21)

(A.1.22)

(A.1.23)

(A.1.24)

(A.1.25)
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First, we examine the first term on the right hand side of equation (A.1.25).

J;‘- .': R

Now

(HE') = K 151’ — K (X—ux)Sxx G'(K—1)"! —

— (K-1)T'GEx(X—ux)K 'L + (K —1) "G xx(X—px)(X—1x) Exx G’

- o

(A.1.26)

ot gl I D QU

We note that (G is as given in equation (3.2.1.45)

P

A XG = (X - X14)G = (K-1)Sxx (A.1.27)

Hence

X(HE)X' = KX 41X — X(X—ux) Sk Sy’

— Sxx Zxx(X—1x)X + Sxor ik (X—x)(X—11x)' C ik Sxxc!

(A.1.28)

Looking at the first term in the right hand side of equation (A.1.28) we have

o E(K™X1x1x'X) = K2E(XX) = K™ 'Syy + uxux'  (A.1.29)

__x_ Examination of the second term in the right hand side of (A.1.28) reveals

”.;' E [J_C(i—ux)'zﬁsxx'] =E [i(i—ux)’ ]Z)&E [Sxx’] = (A.1.30)
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- E[)‘o‘c - )QJX’]S_,&SXX = (A.1.31)
i

E:

N —

e E[XX’ — uXuX'] =K 'Syy . (A.1.33)
W

. Now we examine the fourth term on the right hand side of (A.1.28), we

observe as a consequence of equation (3.2.1.9) that

‘ E[Sﬂzﬁ()—(—ux)()—(—ux)’zﬁsﬂ(’] = cov [S)Q(Zﬁ(}_(—ux)] =
(A.1.34)
{ E [cov [S)Q(Zﬁ()—(—px)] Sxx = 835 ” + cov [E [Sxxzﬁdi—#x)l Sxx = Sy ” =
‘i
4
(A.1.35)
)
4
¢ E [cov [S)Q(Z)—DI((}—(—-#X) | Sxx = 8z H = E[S)O(Z;:}(cov [}_CI Sxx = Szz ]Z}EI{SXX] =
«
" (A.1.36)
>
K+
E[sﬂzﬁx—lzﬂzﬁsﬂ] = E[K”‘S)D(Z;J}(SH] . (A137)
A Let W~ Wq(K—-1,1y), where Wq(K—-1,Ig) is a random matrix
-f
&
s
4
”
4
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B
: distributed as Wishart with K'—1 degrees of freedom and expected matrix I5.
) Now, Syx ~ Wo(K—1,K—1"'Sxy) , so Syy ~ (K—1)"' LW . Now
o
5 continuing from equation (A.1.37)
o
b -
* E[K‘ISHE;OI{SH] = E[K“I(K—l)'z(Z}&’wvl D) Sxx (2x 2'w2,‘(5§)] =
\
(A.1.38)
> E [K“(K—n‘?zj‘&wwzﬁﬁ] = K YK —-1)"253E [ww]z)gg
N
{
e (A.1.39)
A
p Now we compute E[’U)’U)] with the following arguments. Let Q@ = WW, first
{
k. consider the E{Q];; when ¢ = j.
N
- 0
B E [Qﬁ ] =F E wiv wiv ] = (A.1.40)
=1
+]
s
Y Q 9
S E [wiv ] = (A.1.41)
:‘ v=]
.
>
3
Using equation (4), page 90 of Muirhead (1982) (and some algebra), we get
R~
- Q .
3 = Y var [’LU-,v +E [w“ ] = (K-1)(K+Q) . (A.1.42)
X -1
y v
i
"
.15
q
e
Y
N- - - - - - « .
oY e m e e et e e e e ey s .
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Now, consider when 1#7
Q
E[Qa] =E| YW, W, |= (A.1.43)
v=]
Q
E[wii wji ] +E [wij W;; ] + Y E [wiv Wiy ] = (A.1.44)
v=]
Vi,

Once again we apply equation (4), page 90 of Muirhead (1982) (and some

algebra) we get

Q
cov [wﬁ w;; ] + cov [wijwjj ] + ) cov [ww Wy ] =0.

v=1
v #i,)
(A.1.45)
So, we have
E[Q] = (K—l)(K+Q)IQ (A.1.46)

and so equation (A.1.34) (the fourth term on the right hand side of equation

(A.1.28) becomes

(K=1)(K+Q) ¢

E [K“SD{EJ}}(SH] = Cxx (A.1.47)

(K—1)?
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We now have all the pieces of equation (A.1.28) in equations (A.1.29),
(A.1.33), and (A.1.47). Returning to equation (A.1.24), we see that we need

E(XH). Now equation (3.2.1.9) implies

~

E(XH) = — E| S Sk (Rix) | = s (A1.48)

Now putting equation (A.1.28) together yields

cov(XH) = K15y — 2K Ty + K ?;)iff)j@zm (A.1.49)

- (%f;—sz . (A.1.50)

Now, insertion of equation (A.1.50) into equation (A.1.22) implies equation

(A.1.18) becomes

cov [E[ vec YH|Z = zH = ﬁzyxzﬁfzxy ) (A.1.51)

so equations (A.1.51) and (A.1.17) combine in equation (A.1.3) to yield

equation (3.2.1.10).
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::: Appendix 2: Derivation of Equation (3.2.1.15)
’
ol
Let
K+Q -1 K—2
| = and ¢, = | ————
K-1 s K+Q -1

We are interested in the conditions on p; such that

Ny —C1H[1 € 2p; ]<1

t=]

Let v = p and let p- represent the smallest canonical correlation, now

] -

N2 —cln[l—Czp,]

1=1 t=1

and

substitution gives

/i
2o | Kt Lok T l
K—2 K+Q -1 J'
L S RO

'}\r. “e " \‘ ..... N, Mw

NN LS S . \
m o AV ".xi'i.&.:x_\mh_h. LSRN .xum.xu;.kaAil.M;Lm m.h."z..m,.....‘ " asal
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(A.2.1)

(A.2.2)

(A.2.3)

(A.2.4)

(A.2.6)
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but ;= p by assumption, so algebra reveals

. K+Q -1 K-l Q
2> - L= |—/——— || = —— . A2.7
' K =2 K+Q -1 K =2 (A-27)

NI e SN
o S e 2 a e T
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_;::.‘ Appendix 3: Derivation of Equation (3.2.1.17)
Let

ohe K+Q -1 -
- L K—1 _ _K-2
) c(ip) = K , € = K+o—1 (A.3.1)

K—Q -2

Note c{ivp).ec; <1,71 ,p >0. Write

~——

L
: [Te(p) |1 = ey
t=]

n = - (A.3.2)
(11—t

:_ tm=]
“~
S

~

{ To start the induction let t* =1, then

c(L,p) ll = 01/712]
= ’ <1, (A.3.3)

5 [‘1 —plz,]

=T T
B b

implies

c(l,p)[l—clpf]< [1—p12] = pl> cll L <1. (A.34)

C(l,p)cl -1

Hence conditions exist when v/ = 1. Now, when v = n+1

\
A T T,
¥y n R

: AP PN

) tIj]lc(n-kl,p)ll—cl,o,zJ c

(n+1,) {1 = e 10l ]
n(n+l) = X

(A.3.5)

2
[1 ™ Pr+i
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(A.3.6)

Assume 7)(71+1) <1, then

c(n+1.p) [1 = croZ.,

in) < [I—Pffll

<1, (A.3.7)

by an argument similar to that leading to equation (A.3.4). Now specify p, ,;

as p. and the induction follows.
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Appendix 4: Derivation of Equation (4.2.4.1)

Now

and

which implies

for j =1, -

N(t)
El v

E[XﬂN(t)]=0,

var [X]RI N(t)] =1,

cov [Xf,X,f

N(t)] = E[X}?X,ﬁN(t)]

,Sand fork =1, -, 5. By substitution

cov [‘ ]R,Xfl N(t)] =

Uil) =2,(")  NEI__ Un(k) = pil*)

T T w T W AR Te T W TR TR TR W WT
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(A.4.1)

(A.4.2)

pasv]
{ =

1V V()

| V()

1= p,())p,(F) maa VN1 — pe (7)) (%)
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N (¢ Nit) a9
= P, (F)N() X Un(k) = pil )N(t)ll Ui (0) + p, e (F)N(E)TN(E) |
m=1 =1
(A.4.3)
Now
N(t) 2
E\p;(*)N(t) S Un(k)[N(t) | = p;(*)p(*)N(t) . (A-4.4)
mm=]
So insertion of equation (A.4.4) into the above yields
cov [, JR,X,ﬂ N(t)] =
N(t) N(t)
E IL’ Ui (5) S Un(k) | = py(*)pe(*)N(2)? N(t)
=1 m=1
NN (= p;(*)p; ()1 = pe(*))pe(*)
(A.4.5)

Nit) N(t)
Let Y, = YU, (j)and Yy = VY U,(k). Now Y, and Y, are the marginals
l=] m=1

of a multinomial distribution. Hence

N(t) N(t)
E|'SU, () S U (k)| N(t) =15[YJY,c N(t)} (A.4.6)
[=] mm=]

.-..;?'5_\;. ARSIy -'. -.'_\* -_:\_:‘ }-- ; - _,-', ..... e e e
e e e et S P
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= cov {Y],Y,c : N(t)} + E[YJ ] ,\'(t)]E [}’k | V(¢ )] (A.4.7)
= —N(t)p,(*Ipe(*) + N ()P, (*p(*) | (4.4.8)
-_:‘j:: So, equation (A.4.5) becomes (after some algebra),

cov [Xf,

Vo) -

1

(N (1 = p, (e ()1 = pe(%))p(¥) [

—N(t)p,(*)pe(*)| (A4.9)

- _ =, (*)pi(*) (A.4.10) |
- V= 7,00p, 00 = 2 )pe (%) h

~ p;(*)pi(*) v
L (1= p,(*)N(1 = (™))

(A.4.11)

aeT AT - A - ‘..'»f -‘-"';-.
‘A_A.‘q.‘.J('..A-‘-...n...‘.("'..:f..l..-A‘"l"..--:A.i-nl._AA_nuﬂf_..‘f.;uh..f.l‘-



-

'y

DR
CLMACANIRESE

e Te %a

) 9 '; o LA '(U‘
% l-"'."'/"-“ Ao

('L

|

XA
n..n':',l'J A

- 7 X ] -

E

Appendix 5: Proof of Relation (4.2.4.2)

In this appendix we establish that

D

n—x

Xk

N, (0,XRR) (A.5.1)

where XF = [X{z, SR ,XSR]. Here there are 1, - - - ,s stations with positive

probability of being branched to from the CPU. We closely follow a similar

proof offered by Wilson and Pritsker (1984a, appendix A).

Let g(t) be the greatest integer in ot for ¢ >0. Here

lim pi*

Clk = ¢ - pCPU Wlth pl‘Obab“u}' 1 (A.52)
E [UCPU]

where k is the station branched to, pcpy is the utilization of the CPU, and
Ucpy is the service time distribution of the CPU. Now express the

standardized routing variable X¥(t) in terms of the partial sum process

n U(k)—pu
S, (k) = S’(—)—k , n>1. (A.5.3)
7=1 %k

Wilson and Pritsker’s proof is based on use of the "dissection” formula

R .
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where
Z\(t) = Sype)/9 (kit)?
1/2
Fy(t) = { [g(k’t)/N(k,t)] - I}Zk(t)
1/
Rut) = [lkt)/Nlc) | 2{ B Sg(k,t)]/uk,t)‘/?}.
(A.5.6)
In vector notation we set Z(t) = [Zl(t), R ,Zs(t)]’,
Ft) = [Fi) RO RE) = [Ri0), - R (0]
XR(t)=2z(@t)+ F(t) + R(t) (A.5.7)
To prove equation (A.5.1) we show that, given Z ~ NS(O,Z}{,{”)
b'XE(t) t_lzoo b'Z b ¢ E* . (A.5.8)

{s-1)

Here, Lpp "' is the covariance matrix of standardized controls with one of the

controls removed (more on this below). To show this we

e e
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‘

asymptotic behavior of each component of 5'XF(t). First, we consider the

i
L R AR M T

S x> =

component b'Z(t). We compute the moment generating function of b'Z(t):

exp{ﬁb’Z(t)}

"
’

MR

" .

Myiz)(0) = E

3N =F

exp {(Gb YZ(t )}

= Mz((66) (A.5.9)

» Now the multivariate central limit theorem (Neuts (1973), pg 287) insures

o Z(t)

N,(0,S87Y), 128V >0 (A.5.10)

n —Coe

l In the next two paragraphs we demonstrate that ]Z};’R—l)l > 0.

First, notice that if X is a px1 vector of random variables with positive

definite covariance matrix Xy, then if we transform X as

Z = diag(oy!, -+ o0 ) X (A.5.11)

\'A“l.'-
P

.
&’

PRI PN

coviZ| = diag(7!, - - ,0p ") coviX] diag(o7!, - - o0 (A5.12)
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1=1

cov(Z] = {llﬂ’ }covi‘\’: >0, (A.5.13)

hence the covariance matrix of the standardized random varibles is also

positive definite.

N
For notational convenience let N(t)=N, YU ; (k)=MN, and
l=1

N = [Nl, R ,Ns] then

3
SNc=N= | =o (A.5.14)
k=1
Now
|ZksY] =0 =3 N, -\ with some X, #0 (A.5.15)
such that
s—1
S NN =0 wp. 1 (A.5.16)
k=1

If we add (A.5.14) and (A.5.16) we get

s—1
S (A4+NMINg + Ny =N wop. 1 (A.5.17)
k=1

Now for all k, 1 <k <s-—1
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pp(*) >0 = Pr{Nk,N]=0,J¥s ] >0 (A.5.18)
= (14N )N = N (A.5.19)

-\ =0, (A.5.20)

and since py(*) >0,V k we have a contradiction. Therefore, the
covariance matrix of the non-standardized (hence the standardized) controls
is positive definite. Now [Z}{R_l” > 0 validates (A.5.10) and this implies

lim

t —ocMz#)(00) = Mz(6b)

=FE

exp[(@b )’Z}
exp [Qb’Z}

= M,z (8) (A.5.21)

=E
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and equation (A.5.8) follows. Using nearly identical arguments to Wilson and

Pritsker, we can show that |
!

D .o, sr0t)

b'F(t)
t —oC t —o0

0. (A.5.22) |

To finish the proof we apply Slutsky’s theorem twice and invoke the

Cramer-Wold theorem (implied in equation (A.5.8)).
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Appendix 8: FORTRAN Listings of SLAM Models
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c program main(input,output,tape5=input,tape6=—=output,tape?,tapel,
c ltape2,tape3,taped)
program main
dimension nset(5000)
common gset(5000)
common /scoml/ atrib(100),dd(100),dd1(100),dtnow,ii,mfa,mstop,nclnr
l,ncrdr,nprnt,nnrun,nnset,ntape,ss(100),ssl(100),tnext,tnow,xx(100)
common /ucoml/ depart(5),rmean(4),p(4,4),servt(4),ecount(2)
equivalence (nset(1),qset(1))
nnset=>5000

1

ncrdr=3>5
nprot==6
ntape=7

read (ncrdr,*) (rmean(i),i=1,4)

do 12 i=1,4
read (nerdr,*) (p(1,j),j=1,4)
12  continue

call slam
stop
end

c***********************************************************************

c
subroutine event(i)
common /scoml/ atrib(100),dd(100),dd](100),dtnow,ii,mfa,mstop,nclnr
1,ncrdr,nprot,nnrun,nnset,ntape,ss(100),ss1{100),tnext,tnow,xx(100)
common /ucoml/ depart(5),rmean(4),p(4,4),servt(4),ecount(2)
ecount(l)=ecount(1)+1
if(tnow.gt.2000) ecount(2)=ecount(2)+1
goto (1,2),
1 call arss
return
2 call endss
return
end

Ct******************************************************************x*x

[of
subroutine intle
common /scoml1/ atrib(100),dd(100),dd1(100),dtnow,ii,mfa,mstop,nclnr
l,ncrdr,nprnt,nnrun,nnset,ntape,ss(100),ss1(100).tnext,tnow,xx(100
common /ucoml/ depart(5),rmean(4),p(4,4),servt(4),ecount(2)
common /gcom3/ iised(10),jjbeg,jjcir,mmnit,mmon,nname(5),nncfi.
&nnday,nnpt,nnprj(5),nnrns,nnstr,nnyr.sseed(10),lseed(10)
integer iseed(1000)
common /ucom2/ multino(4)
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if(nnrun.eq.1) then
do 1 i=1,1000
iseed(i)={(1.e+12)*drand(1)
1 continue
endif
iised(2)=iseed(nnrun)
x=drand(-2)

do 4i=1,4
multino(i)=0
4 continue

do 5i1=1,2
ecount(i)=0.
5 continue

depart(i)
6 continue

do 7i1=1,4
servt(i)=0.
continue

do 10 i=1,25

etime=expon(rmean(1),2)

atrib{1)=etime

atrib(3)=i

atrib(4)=1

atrib(3)=2

call schdl(i.etime,atrib)
10 continue

do 11 i=1,4

xx(i)=0.
11  continue

write(6,99)nnrun
99  format(1lx,'SIMULATION STUDY IN PROGRESS : RUN ',i4, ' OF

£1000 RUNS")

return

end
:~-t:ttttt#*t**tt*x*****xtt*ktt*tt****xx******K*******i***x*l***xtl‘*t*******

subroutine endss

common /scoml/ atrib(100),dd(100),dd1(100),dtnow,ii.mfa.mstop.nclnr
1.nvrdr.nprnt.nnrtm.nnset.ntape.ss(100),sslSlOO),tnext,tnow.,\'x(100)
common /ucoml/ depart(5),rmean(4),p(4,4),servt(4),ecount(2)
common /ucom2/ multino(4)

call schdl(1,0.,atrib)
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myq=atrib(4)

if(nnq(myq).ne.0) then i
call rmove(l,myq,atrib) §
wait=tnow-atrib(2) i
call colct{wait,myq)
rm=rmean(myq)
service=expon(rm,2)
atrib(4)=atrib(5)
iat=atrib(4)+.00001
call nextguy(iat,inext) j

¢

¢ COLLECT STATISTICS WHILE PARKED AT CPU

c

if(iat.eq.2) then }
multino(inext)=multino(inext)—1 ‘
endif !
atrib(5)=inext
call schdl{2,service,atrib)
if(tnow.gt.2000) then
servt(myq)=servt(myq)-+service
depart(myq)=depart{myq)-1
depart(5)=depart(5)~1
endif
else
xx(myq)=0.
endif

return

end

o

xx ® oK K K K R K K K K K K O K K K K K K K K K K K K K kK K K K K K X K K K K K K K K K K K K K K K K K K ok ok K 3k K ok ok ok kK ok ok sk ok ok ok kok

subroutine arss

common /scoml/ atrib(100),dd(100).dd1{100),dtnow,ii,mfa,mstop,nclnr
l.ncrdr,nprant,nnrun,nnset,ntape,ss(100),ss/(100),tnext,tnow,xx(100)
common /ucoml/ depart(5).rrmean 4),p(4,4S,servr(4),ecount(2)
common /ucom2,/ multino(4)

iat=atrib(5)

if(iat.eq.1) then
resp=tnow-atrib(1) \
call colct(resp,1) \

rm=rmean(1)
service=-expon(rm.2]
atrib{1)=tnow -service
atrib(41=1

atrib(5)=2
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call schdl(1,service,atrib)
if(tnow.gt.2000) servt(iat)=servt(iat)—service
else
if(xx{iat).gt.0.) then
atrib(2)=tnow
call filem(iat,atrib)
return
else
wait=0.
call colet(wait,iat)
rm=rmean(iat)
atrib(4)=1iat
call nextguy(iat,inext)
¢
¢ COLLECT STATISTICS WHILE PARKED AT CPU
Cc
if(iat.eq.2) then
multino(inext)==multino(inext)~1
endif

atrib(5)=inext
service=expon(rm,2)
xx(iat)=1
call schdl(2,service,atrib)
if(tnow.gt.2000) servt(iat)=servt(iat)+service
endif
endif

if (tnow.gt.2000) then
depart(iat)=denart(iat)+1
depart(5)=depart(5)+1
endif

return
end
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Ctx***************************************x*******xx:x*:t*xx{»**x*xx*xx*xx*x**

subroutine nextguy(iat,inext)

common /ucoml/ depart(5),rmean(4),p(4,4),servt(4),ecount(2)

cum==0.
u=unfrm(0.,1.,2)

do 10 index=1,4
cum=cum-p(iat,index)
if{u.le.cum) then
inext=index
goto 11
else

continue

endif
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continue

return
end

subroutine otput

common /scoml/ atrib(100),dd(100),dd1{100).

)

l,nerdr,nprot,nnrun,nnset,ntape,ss
cormnon/ucoml/ depart( ),rmean
common /ucom2/ multino(4)

write(1,*)nnrun

write(1,* ecount 1), 1,2)

write(1,* 4)
4)

write
write
write
write(1,*
isum=0
doli=1,4
isum=isum-+multino(i)
continue
write(1,*)(multino(i),i= 1,4),isum

return
end

Al miadadad

100) ssl
4),p(4,4

100),tnext,tnow,xx({100)
servt(4),ecount(.)
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dtnow,ii,mfa,mstop,nclnr
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[z

program main(input.output.tape>=input,tape6=output,tape7,tapel,
ltape2.tape3,taped)

program main
dimension nset{5000)
common qset(5000)
common /scoml/ atrib(100),dd(100),dd1{100),dtnow,ii,mfa,mstop,nclnr
l,nerdr,nprot,nnrun,nnset,ntape,ss(100),ss1(100).tnext,tnow,xx(100)
common /ucoml/ depart(10),rmean(10),p(10.10),servt(10),ecount(2)
common /ucom2/ isubcap,nusssn.numcust,tclear,nstudy
equivalence (nset(1),qset(1))
nnset=2>5000

~

ncrdr=35
nprot==6
ntape=7

read {ncrdr,*) isubcap,nusssn,numcust,tclear,nstudy
read (ncrdr,*) (rmean(i),i=1,nusssn~2)

do 12 i1=1,nusssn~2
read (nerdr,*®) (p(i.j).j=1.nusssn—-2)
12  continue

call slam
stop
end

(,txxxxtxtxxxxxxxxxx:xtxxx*xxxxxxxx:xx*xxxxx*xxxxcxxK*x*xx***xwtx***x*******

subroutine event(i

common /scoml/ atrib(100),dd(100),dd1(100),dtnow,ii.mfa,mstop,nclnr
l.ncrdr,nprot.,nnrun,nnset.ntape,ss(100),ss1(100),tnext,tnow,xx(100)
common /ucoml/ depart(10),rmean(10),p(10.10),servt(10),ecount(2)
common /ucom?2/ isubcap,nusssn,numcust,tclear,nstudy

ecount(l)=ecount(l)~1
if(tnow.gt.tclear) ecount(2)=ecount(2)~1

1 call arss
return

2 call endss
return
end

kK kK N ok ke K A Kk ok ok K K ok K K ok kK K K ke ok sk ok sk sk X K K K Kk Kk ik KK K i i Kk KK K K K ok kR ok kk ko ok kK K ok ok

&

subroutine intle

common /scom1/ atrib(100),dd(100),dd1(100).dtnow,ii,infa,mstop,nclnr
1,ncrdr,nprot,nnrun,nnset,ntape,ss{100),ssl(100},tnext,tnow,xx(100)
common /ucoml/ depart(10),rmean(10).p(10,10),servt(10),ecount(2)
common /ucom2/ isubcap.nusssn,numcust,telear,nstudy
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common /gcom5/ iised(10),jibeg,jjclr,mmnit,mmon,nname(5),nncf,
o &nnday,nnpt,nnprj(5),nnros,nnstr,nnyr,sseed(10),lseed(10)
common /ucom3/ multino(7)

integer iseed(2000)

if(nnrun.eq.1) then
do 1 i=1,2000
iseed(i)=(1.e+12)*drand(1)
1 continue
5 endif
o iised(2)=iseed(nnrun)
x=drand(-2)

do 4i=1,7
multino(i)=0
4 continue

do 5i=1,2
ecount(i)=0.
5 continue

.’ do 6 i=1,nusssn+3
- depart(i)=0.
6 continue

do 7 i=1,nusssn—+2
servt(i)=0.
continue

-1

T do 10 i=1,numcust
s etime=expon(rmean(1),2)
:—t atrib(1)=etime
. atrib(3)=1
atrib(4)=1
e atrib(5)=2
- call schdl(1,etime,atrib)
'__ 10 continue
- do 11 i=1,nusssn+2
9 xx(1)=0.
i 11  continue
L write(6,99)nnrun,nstudy
o 99 format(lx,’SBvﬂILATION STUDY IN PROGRESS : RUN '/i4, ' OF
- &'i4," RUNS’)
return
N end

s
oo

C
c***x********************************1\1****************************i*********

]
oS

C

subroutine endss
common /scom1/ atrib(100),dd(100),dd](100),dtnow,ii,mfa,mstop,ncinr
1,ncrdr,nprot,nnrun,nnset,ntape,ss(100),ssl(100),tnext,tnow,xx(100)
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o common /ucoml/ depart(10),rmean(10),p(10,10),servt(10),ecount(2)
he common /ucom2/ isubcap,nusssn,numecust,tclear,nstudy
common /ucom3/ multino(7)

call schdl(1,0.,atrib)
myq=atrib(4)

AR agly
e v et
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if(nnq(myq).ne.0) then
call rmove(1,myq,atrib)
wait=tnow-atrib(2)
call colct(wait,myq)
rm=rmean(myq)

- service=expon(rm,2)

atrib(4)=atrib(5)

iat=atrib(4)+.00001

call nextguy(iat,inext)

vl

¢

¢ COLLECT STATISTICS WHILE PARKED AT CPU
-:_: '}

if(iat.eq.3) then

o multino(inext)=multino(inext)+1

' endif

e atrib(5)=inext
N call schdl(2,service,atrib)
- if(tnow.gt.tclear) then
R servt(myq)=servt(myq)+service
( depart(myq)=depart(myq)+1
v depart(nusssn+3)=depart(nusssn+3)+1
. endif
else
xx(myq)=0.
endif

if(myq.eq.3.and.nnq(2).gt.0.and.isubcap.ne.0.and.inext.eq.1
&.and.nnq(myq).ne.0) then

call rmove(1,2,atrib)

service=0.

atrib(4)=atrib(5)

atrib(5)=3

call schdl(1,service,atrib)
endif

[g
ﬁﬁl

Z

r < -
.
- .
r’ J

RN return
- end

c***************************************************************************
Cc

subroutine arss
o common /scoml/ atrib(100),dd(100),dd](100),dtnow,ii,mfa,mstop,nclar
- 1,ncrdr,nprnt,nnrun,nnset,ntape,ss(100;,331(100),tnext,tnow,xx(100)

\ ,p(10,10),servt(10),ecount(2)

T, common /ucoml/ depart(10),rmean(10




common/ucom2/ isubcap,nusssn,numcust,tclear,nstudy
7

common /ucom3/ multino(7)
lat=atrib(5)

\

1

if(iat.eq.1) then “

resp=tnow-atrib(1) :

call colet(resp,1) ‘

rm=rmean(1) ‘
service=expon(rm,2)

atrib(1)=tnow-+service
atrib(4)=1
atrib(5)=2

call schdl(1,service,atrib)
if(tnow.gt.tclear) servt(iat)=servt(iat)+service
go to 101

endif

if(iat.eq.2) then
if(isubcap.ne.0) then

numsub=0

do 10 i=3,nusssn+2

numsub=numsub+nnq(i)+xx(i)

10 continue
if(numsub.lt.isubcap) then
if(nnq(2).eq.0) then
wait=0.
call colet(wait,2)
service=0.
atrib(4)=2
atrib(5)=3
call schdl(1,service,atrib)
go to 101
else

atrib(2)=tnow
call filem(2,atrib)
call rmove(1,2,atrib)
wait=tnow-atrib(2)
call colet{wait,2)
atribg4;=2

atrib(5)=3
service=0.
call schdl(1,service,atrib)
go to 101
endif
else
atrib(2)=tnow
call filem(2,atrib)
return
endif
endif
endif
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o 100 if(xx(iat).gt.0.) then
R atrib(2)=tnow
. call filem(iat,atrib)
AN return
S else
o wait=0.
- call colet(wait,iat)
. rm=rmean(iat)
) atrib(4)=iat
o call nextguy(iat,inext)
c
-\.':-: ¢ COLLECT STATISTICS WHILE PARKED AT CPU
S c
i if(iat.eq.3) then
- multino(inext)=multino(inext)+1
endif
-
RN atrib(5)=inext
N service=expon(rm,2)
L xx(iat)=1
AN call schdl(2,service,atrib)
o if(tnow.gt.tclear) servt(iat)=servt(iat)+service
g endif

- 101 if (tnow.gt.tclear) then
- depart(iat)=depart(iat)+1
depart(nusssn+3)=depart(nusssn+3)+1
endif

Py

return
end

|
[ |
c**************************************************************************** ‘
1

( )» -y ! )
] 4 ' oo
fe” R

c |

- subroutine nextguy(iat,inext) ‘
o common /ucoml/ depart(10),rmean(10),p(10,10),servt(10),ecount(2) :
YN common /ucom2/ isubcap,nusssn,numcust,tclear,nstudy
.r_:..
""-._"; cum=0.
- u=unfrm(0.,1.,2)
A do 10 index=1,nusssn+2
o cum=cum-+p(iat,index)
e if(u.le.cum) then
T inext=index
L goto 11

o else
S continue
o endif
- 10 continue
N
5 11  return
o
’\‘:
i‘ .r:':
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o subroutine otput
o common /scom1/ atrib(100),dd(100),dd1(100),dtnow,ii,mfa,mstop,nclnr
. y l,ncrdr,nprot,nnrun,nnset,ntape,ss(100),ssl(100),tnext,tnow,xx(100)
e common /ucoml/ depart(10),rmean(10),p(10,10),servt(10),ecount(2)
i cornmon/ucorn2/ isubcap,nusssn,numcust,tclear,nstudy
- common /ucom3,/ multino(7)
3 ":‘
b write(1,*)nnrun
- write(1,*)(ecount(i),i=1,2)
. write(1,*)(ccavg(i),i=1,nusssn+2)
.- write(1,*)(ttavg(i),i=2,nusssn+2)
-- . * - I_
S write(1,*)(servt(i),i=1,nusssn+2)
ey write(1,*)(depart(i),i=1,nusssn+3)
‘*'-\;'- isum=20
e do 1i=1,7
) | isum=isum-+multino(i)
; 1 continue

write(1,*)(multino(i),i=1,7),isum

return

{ end
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program tree(input,output,tape7.taped3=input,tape6=output)

KEKKKEKKRK KK KKK LK KKK KKK KKK KKK KKK KK KKK EE LR AKX LK XX KR KX KK X KK

*
x

This program uses an "all possible regressions” approach to  *

select the best subset of controls from a given candidate set.
It assumes that certain number of meta-experiments have been
performed each with the same number of replications. Once the *
optimal subset has been identified, a confidence region is *
constructed about the mean vector for the responses. Coverage
and volume reduction is tallyed and subsequentlz summarized.

*

*

The program can be run in two modes. The user can either *

estimate the covariance matrix of controls or incorporate
it directly. The program variable "iknow  dictates which *

option is in effect (see code below). *
E 3

The program can also be run in the "best m" regressions mode. *

( Currently only configured for estimated covarlance matrix
of controls)

In other words it will compute the best m subsets of each

possible subset size. This can be of interest if a smgle set

of data is used.

*

*
*

*
*

PARAMETERS TO BE INITIALIZED: *
*x
nx = # of candidate controls *
ny = # of responses *
keepers = # of best regressions to be kept *
(m in "m best" as above) *
numreps = # replications per meta experiment *
meta = # of meta experiments *
*
NOTE: *
*
IN SUBROUTINE COVER : nx2 AND ny2 MUST BE SET *
TO nx and ny RESPECTIVELY. *

(IN THE PARAMETER STATEMENT) *
%

e 3k >k s e ok e ok Sk ok e ok s vk k Sk 3k ke Sk ok e ke sk K ke ke ok ok e K ok ke Kk ok Xk sk ok ke ok e okl sk ok ke ok ok dk sk K 3K ke K K K K ok Kk Kk

program tree

parameter (nx="7,ny=2,nvar=nx+ny,keepers=6,knx=2**nx)
parameter (numreps=20,meta=50)

parameter(nl=nvar n2—numreps n3=numreps,n4=1,n5=1,n6=0)
parameter nnl—((nl*(n1+1 ))/2))

common sig,kk,iqq,ip

character*25 title,respons(ny),control(nx)

real a(nvar,nvar,nvar)

real wkarea(ny),rss(ny,ny),dum(ny)

integer nk(nvar)

dimension x(n3,n1),nbr(6),temp(nl),xm(n1)

“«.
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o real vev({n1*(n1-1))/2),full(nl,a1)
Y real revr(keepers nx ,2), buﬁ(keepers) buff2(keepers)
. real ff{0:nx)
. external f
. integer models(knx,nx),ibuff(nx)
N integer ih(nl)
- integer icover(4),ictot(4)
o real vecybar(ny),vr(2),volred(2),coverag(4)
v real vecmuy(ny),vecmuc(nx),ybar{ny),cbar(nx),veccbar(nx)
4 real covev(nx,nx)
X real target(ny,ny)
N data vecmuc/0.,0.,0.,0.,0.,0.,0./
- data vecybar /78.31305, 4132402/
- data vecmuy /81.71, 413/
data veccbar -2.169668E-02,-1.416941E-02,5.544987E-02,
o & -1.809913E-02
" & ,3.908565E-02,-1.957430E-02,3.610350E-03 /
: data title/’ MODELS5: TRANSFORMED'’ /
i data respons/’SYSTEM RESPONSE TIME’,
& 'CPU UTILIZATION '/
(] data control/'/ROUTING VARIABLE (1),
g & 'ROUTING VARIABLE E3;’,
< & 'ROUTING VARIABLE (4
N & "WORK VARIABLE (1),
. & "WORK VARIABLE (2)’,
- & "WORK VARIABLE (3)’,
( & "WORK VARIABLE (4)'/
b open (unit=1,file="’out.model.5’,status="new"’)
‘& write(1,31) title,meta,numreps,meta*numreps
; 31 fo;mat,(lx,a25,’meta = ',i3,” numreps = ',i3,’ total reps = ',
K &i4

* write(1,32)meta*numreps
32 format(lx,’the response are’,13x,’'mean ’,i4,’ reps’,2x,
&'steady state mean'/)
- do 33 i=1,ny
write(1,34)i,respons(i),vecybar(i),vecmuy(i)
34  format(2x,i2,1x,225,{12.5,4%,f12.5)
- 33 continue
write(1,35)
- 35 format('’
. write(1,36)meta*numreps
‘ 36 format(lx,'the candidate controls are’,3x,'mean ’,i4,’ reps’,
&2x,’steady state mean’))
do 37 i=1,nx
write(1,34)i,control(i),veccbar(i),vecmuc(i)
37 continue
write(1,35)

¢ iknow IS THE FLAG FOR USE OF THE KNOWN COVARIANCE MATRIX
c OF CONTROLS
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iknow = 1 known cov used
iknow = 0 cov estimated

o0 nn

iknow=0

if(tknow.eq.0) then

write(1,38)

else

write(1,39)

endif
38 format(/,1x,, COVARIANCE MATRIX OF CONTROLS WAS ESTIMATED")
39  format(/,Ix, KNOWN COVARIANCE MATRIX OF CONTROLS WAS USED")

HERE WE READ THE KNOWN COVARIANCE STRUCTURE OF CONTROLS
(IF REQUIRED)

oo 00

if(iknow.eq.1) then
open(unit=3,file="cov.model.5’,status="o0ld’)
rewind 3
do 21 i=1,nx
read(3,*)(covev(i,j),j=1,nx)
21 continue
endif

nbr(l)=nl
nbr{2)=n2
nbr(3)=n3
nbr{4)=n4
nbr(5)=n5
nbr(6)=n6
ix=n3
sig=.90

MAKE THE F TABLE

[e BN ¢

ip=ny
kk=numreps
call ftabl(ff,nx)
print *’f table’,ff

iwrite = 0 Meta Experiment mode
iwrite = 1 Best m Regressions mode
(m=keepers above)(meta = 1)

[ B s BN s BN ¢

iwrite=0

INITIALIZE COVERAGE AND VOLUME REDUCTION ACCUMULATORS

a
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x50

851
¢

lr e

999

998

997

996

995

O 00000

10

13

do 850 iz=1,4

ictot(iz)=0
continue

do 851 iz=1,2
vr(iz)=0.
continue

THIS IS THE META EXPERIMENT LOOP

do 1000 mm=1,meta
INITIALIZE ARRAYS

numreg=1_0

do 999 iz=1,keepers
do 999 jz—1,nx
do 999 kz=1,2
regr(iz,jz,kz)=0.
continue

do 998 iz=1,knx

do 998 jz=1,nx
models(iz,jz)=0
continue

do 997 iz=1,nvar

do 997 jz=1,nvar

do 997 kz=1,nvar
a(iz,jz,kz)=0.

continue
do 996 iz=1,keepers
buff(iz)=0
buff2(iz)=0
continue
do 995 iz=1,nx
ibuff(iz)=0
continue

READ THE DATA (each record => [controls|responses])
COMPUTE THE COVARIANCE MATRIX

SAVE SAMPLE MEANS

BOUND THE GENERALIZED VARIANCE

do 10 i=1,n2

read(5,*)(x(i,j),j=1,n1)

continue

call becovm(x,ix,nbr,temp,xm,vev,ier)
do 13 i=1,nx

cbar(i)=xm(i)

continue

'WWWWF“
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b
o
- do 14 i=nx~-1,nl
o vbar(i-nx)=xm(i}
N 14 continue
. call vevtsf(vev,nl.full.nl)
“ do 11 i=1,nl
N do 11 j=1,n1
o a(1,i,j)="full(i,j)
o 11  continue
77T is=1
X do 99 ii=1,ny
do 99 jj=1,ny
if(jj.gt.ii) then
rss ii,jj§=a(is,nx+ii,m(+jj)
rssgjj,ii =rss(ii,jj)
else
if(ii.eq.jj) then
-2 rss(il,jj)=a(is,nx~ii,nx~}j)
n endif
Al endif
"o 99  continue
oy lopt=35
) call linv3f(rss,dum,4,ny,ny,d1,d2,wkarea,ier)
if(ier.ne.0)print *,"IDIED BELOW 99"
det=d1%2**d2
big=(foat(numreps-1)/float(numreps-nx-2))**ny
, two=2*big*d1*2**d2
( ¢ STUFF THE BOOKKEEPING ARRAY WITH THE BOUND

3 do 200 ii=1,keepers
~ do 200 jj=1,nx
e regr(ii,jj,1)=two

l : 200 continue
c

. ¢ CONDUCT A BINARY SEARCH OF THE REGRESSION TREE
N c FURNIVAL AND WILSON (1974)
‘::;_: k=nx
b do11=1k
AN 1  continue
o nk(k+1)=1
~ =1
S 2 nk(l)=1

« do 3 m=1Lk
5 if(nk(m+1).eq.1) go to 4
:' e 3 continue
A 4  call gauss(k-m+1,k-1+2,k-1+1,a,nvar,nvar)
\h
" ‘\:;' c
3% ¢ CALCULATION OF THE GENERALIZED RESIDUAL COVARIANCE
35-5
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c
is=k-1-2
do 100 ii=1,ny
do 100 jj=1,ny
if(jj.gt.ii) then
rssﬁii.jjgza(is,nx-—ii,nxﬁjj)
rss{jj,ii)=rss(ii,j])
else
if(ii.eq.jj) then
rss(il,}j)=a(is,nx~ii,nx~}j)
endif
endif
100 continue
lopt=2>5
if(iknow.eq.0) then
call linv3f(rss,dum,4,ny,ny,d1,d2,wkarea,ier)
if(ier.ne.0)print *,"IDIED BELOW 100"
det=d1*2**d2
endif
c
¢ BOOKKEEPING LOGIC TO SAVE M=KEEPERS BEST REGRESSIONS
¢ OF ALL J SUBSETS SIZES
c

mv=o
do 300 n=1,nx
mv=mv+nk(n)
300 continue

if(tknow.eq.0) then
const=(float(numreps-1)/float(numreps-mv-1))
det=det*const**ny

else

call covknow(rss,ny,full,nvar,target,dum,numreps,mv,det)

endif

do 301 j=1,keepers
if(det.lt.regr(j,mv,1)) then
numreg==numreg-+1
do 302 jj=j,keepers-1
buff(jj+1)=regr(jj,mv,1)
buff3(ij+1)=regr(jj,mv,2)
302 continue
regr(j,mv,1)=det
regr(j,mv,2)=numreg
do 303 jj=j+1,keepers
regr jj,mv,lgzbuff(jj)
regr(jj,mv,2)=buff2(jj)

303 continue
call keepit(numreg,nk,nx,models,knx,nvar)
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RN go to 304
o endif
i 301 coatinue
oy 304 continue
o do 5 |1=1,k
s if(nk(l).eq.0) go to 2
. nk(l)=0
e 5  continue
c
_:,. ¢ THIS BLOCK IS FOR BEST M SUBSETS MODE OF OPERATION
] ¢
o if(iwrite.eq.1) then
e do 500 i=1,nx
= write(1,600) keepers,i
. 600 format(10x,'best ’,i2,” regressions with ",i2," variables'//)
do 500 j=1,keepers
ivar=0
iin=0
do 400 ii=nx,1,-1
o ivar=ivar+1
N if(ifix(regr(j,1,2)+.0001).eq.0) go to 500
o if(models(ifix(regr(j,i,2)+.0001),ii).eq.1) then
A iin=iin+1
. sl ibuff(iin)=ivar
. endif
X 100 continue
' rdet=regr(j,i,1)
write(1,601)rdet,(ibuff(ij),ij=1,iin)
D 601 format(1x,e16.8,10%,30(i2,1x))
ARAS 500 continue
- endif
c
c FOR EACH SUBSET COMPUTE THE CRITERION AND SAVE THE MINIMUM
. c
1 if(iwrite.eq.0) then
. e ip=ny
Sl kk=numreps
i do 650 iq=1,nx
i if(iknow.eq.0) then
L regr(1,iq,1)=regr(1,iq,1)*c3(kk,iq,ip)*cfront(kk,iq,ip)*
nl & fi(iq)
N else
s regr(1,iq,1)=regr(1,iq,1)*c4(kk,iq,ip)*cfront(kk,iq,ip)*
e & fi(iq)
patng endif
-\':‘,‘ﬂ.
T if(ig.eq.1) rmin=regr{1,iq,1)+1000.
{~7s 650 continue
b do 700 iq=1,nx
X > if(regr(1,iq,1).lt.rmin) then
s
e
-
b ]
Shgich
N
- )
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rmin=regr(1,iq,1)
lat= regr(1,iq,2)
endif
700 continue
ivar=0
iin=0
do 750 ii=nx,1,-1
ivar=ivar—1
if(models{iat,ii).eq.1) then

iin=lin+1
ibuff(iin)=1ivar
endif
750 continue
sp=rmin
write(1,601)sp,(ibuff(ij),ij=1,iin)
c
¢ FIND THE VOLUME REDUCTION AND INDICATE COVERAGE
¢
call cover(vev,nl,nnl,models,knx,nx,iat,iin,ybar
&,cbar,vecmue,ny,vecmuy,numreps,ff,ih,icover,volred,vecybar
&,iknow,covev)
c
¢ COVERAGE AND VOLUME REDUCTION TALLYS
c

do 800 ic=1,4
ictot(ic)=ictot(ic)+icover(ic)
800 continue
do 801 ic=1,2
vr(ic)=vr(ic)+volred(ic)
801 continue

endif
print *"THIS IS META-EXPERIMENT # ",mm, icover ",icover

1000 continue

do 1001 iz=1,2
vr(iz)=vr(iz)/Hoat(meta)
1001 continue
do 1002 iz=1,4
coverag(iz)=1foat(ictot(iz))/foat(meta)
1002 continue

write(1,602)coverag(1),vr(1)

602 format(1lx,’contrld coverage on steady -
&’ vol reduct ’,e16.82
write(1,603)coverag(2)

603 format(1lx, uncontrld coverage . .
write(1,604)coverag(3).vr(l:

604 format(1lx,'contrld coverazs
&' vol reduct "el16.%!
write(1,605)coveraz i

4
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"
o
* »
:: 605 format(1lx,’uncontrld coverage on sample mean of 1000 reps’,f12.8)
!
N stop
o end
G
x:: subroutine gauss(ib,is,ip,a,kp,nvar)
P c
0.x ¢ THIS SUBROUTINE PERFORMS THE PIVOTS FOR VARIABLE
) c INTRODUCTION INTO REGRESSION MODELS
qty c FURNIVAL AND WILSON 1974
N c
sl'_,;\. real a(nvar,nvar,nvar)
: :,r«:" Ib=ip+1
& c
i ¢  TOLERANCE CHECK ON PIVOTS
\ c
g if(a(ib,ip,ip).1t..01) then
5 do 10 I=lb,kp
v") a(is,ip,l)=a(ib,ip,!)
A do 10 m=Lkp
e a(is,l,m)=a(ib,l,m)
‘. . 10 continue
£58 return
"o else
-7 do 1 I=1b,kp
R a(is,ip,l)=a(ib,ip,l)/a(ib,ip,ip)
: do 1 m=Lkp
. 0 a(is,l,m)=a(ib,l,m)-a(ib,ip,m)*a(is,ip,l)
o : 1 continue
~: o return
X yJ endif
:'?'l f)
;) end
e
::Ej subroutine keepit(numreg,nk,nx,models,knx,nvar)
2 c
}."E ¢ THIS SUBROUTINE FINDS THE MODEL OF A CANDIDATE REGRESSION
c
P integer nk(nvar),models(knx,nx)
'\.::\ do 1 i=1,nx
et models(numreg,i)=nk(i)
~- 1 continue
N return
P o end
Bt c
K17 ¢ THE FOLLOWING FUNCTIONS ARE USED TO COMPUTE THE SELECTION
R c CRITERION
s c
X i
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Y. o
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real function ¢3(k,iq,ip)
e3=cl(k,iq,ip)*c2(k,iq,1p)
return

end

real function c4(k,iq,ip)
prod=1.

do 10 i=1,ip
top=float(k-ig-i)
bot=1float(k-ig-1)
prod=prod*(top /bot)
continue

c4=prod

return

end

real function cfront(k,iq,ip)
top=~float(k-ig-1)
bot="float(k-ig-ip)
cfront=(top/bot)**ip

return

end

real function c¢1(k,iq,ip)
prod=1.

do 10 i=1,ip
itop= k-lq—l)
ibot=(k-ig-1)

term= ﬁoat&xtop )/float(ibot)
prod=prod*term
continue

cl=prod

return

end

real function ¢2(k,iq,ip)
sum=0.

pl=1.
p2=1.
do 10 j=0,ip

ileft= Jcomb(lp,.])
if(j.ne.0) then

1—p1*51q+2*(j 1;)

p2=p2*(k-ig-(2*})
rnext=pl/p2

else
rnext=1.

endif

term="{loat(ileft)*rnext
sum=sum-+term
continue

¢c2=sum
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U
b
N3 return
Q end
" integer function jcomb(n,m)
A\ itop=nfact(n)
N ibot=nfact(n-m)*nfact(m)
o jcomb=itop /ibot
ot return
” end
o integer function nfact(m)
a.l.: if(m.eq.0)then
::,0 nfact=1
o return
",:.' endif
of N
ip=m
iloop=m-1
o do lq i——Tiloop,Z,-l
i ip=ip*i
% 10 continue
N nfact=ip
i return
end

¢

= ¢ THIS SUBROUTINE COMPUTES A F TABLE (TO THE POWER P)
X c
o subroutine ftabi(ff,nx)
A common sig,kk,iqq,ip

: real root(1),last,ff(0:nx)
' external f

.f-. eps=.001
nsig=>5

0N nroot=1
itmax=1000

B last=3.

‘.r) do 10 iqq=0,nx
& root(1)=last

) 101  call zreal2(f,eps,eps,eps,nsig,nroot,root,itmax,ier)
A if(ier.eq.33) then
e root(1)=last+1.
= ier=0

. write(68,102)

o 102  format(lx,’ignore last ier=33 warning --- reinitializing’)
o go to 101
N endif

3 last= rootSl)
o fp=root(1)**ip
3 f(iqq)=fp
L 10  continue
™ return
,'?. 1 end
e
e real function f(z)
¥

N
o

’:‘:'

(0

4
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common sig,kk,iqq,ip
nl=ip

n2=kk-iqq-ip

call mdfd(z,n1,n2,p,ier)
f=sig-p

return

end

subroutine cover(vev,nl,nnl,models,knx,nx,iat,iin,ybar
&,cbar,vecmuc,ny,vecmuy,numreps,ff,ih,icover,volred,vecybar
&,iknow,covev)

THIS SUBROUTINE DOES THE COVERAGE AND VOLUME REDUCTION CALC
FOR THE OPTIMAL CONTROL SUBSET

parameter(nx2=7,ny2=2,n12=nx2+ny2,nn12=((n12*(n12+1))/2))

real vev(nnl),ybar(ny),cbar(nx),vecmuc(nx),vecmuy(ny)
&,f(0:nx),vecybar(ny),volred(2),covev(nx,nx)
integer models(knx,nx),ih(nl),icover(4)

real scbar(nx2),sveemu(nx2),subv(nnl2),subvf(nl12,n12)
&,b(n12),wkarea(2*n12),buff1(n12,n12),buf2(ny2,nx2)
&,beta(ny2,nx2),cdevl(1,nx2),cdev2(nx2,1),expi(ny2,ny2)
&,dev(ny2,1),ybhat(ny2),bufi3(nx2,ny2)
&,buff4(ny2,ny2),sydote(ny2,ny2),hph(1,1),t1(1,nx2)
&,ymd1(1,ny2),ymd2(ny2,1),t2(1,ny2),0bs(1,1
&,buff5(ny2,ny2),buffé(ny2,ny2),ymd3(1,ny2),ymd4(ny2,1)
&,0bs2(1,1)
&,symcove((nx2*(nx2+1))/2,,subcove((nx2*(nx2+1))/2)

& ,fulcove(nx2,nx2),gamma(ny2,nx2)
&,ehat(ny2,ny2),buff9(ny2,ny2)
&,cancorr(ny2,ny2),reigs(ny2),eigs(2*ny2),dummy(ny2,ny?2)
&,wk(ny?2)

integer ih2(nx2)

complex ceigs(ny2)

equivalence (eigs(1),ceigs(1))

INITIALIZE COVERAGE AND VOLUME REDUCTION VECTORS

do 8i=1,4
icover(i)=0
continue
do9i=1,2
volred(i)=0.
continue

FIND THE SUBMATRIX FOR THE SELECTED MODEL

T W e PN ‘ Mo 4 it S0 DO 0NONN0 s R L HOGCO)
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¥
e do 10 i=1,n1

AN if(i.le.nx) then

ih(i)=0

vy ih2(i)=0

e else
e ih(i)=1

s endif

K 10 continue

)
& ivar=0

o do 50 ii=nx,1,-1

A iv(ar=iva(r+1 ) )

Y if(models(iat,ii).eq.1) then

W ih(ivar)=1

' ih2(ivar)=1
. endif
b e 50 continue
)
M ml=nl
:’.:::, call rlsubm(vev,ml,ih,subv,m2)

0,
(@ ¢

rov ¢ FIND THE SUBVECTOR (POPULATION AND SAMPLE) OF THE
0% c CONTROL MEANS
> c
o
b
index=0
\ do 100 ii=1,nx
e, if(ih(ii).eq.1) then

N index=index+1

o scbar(index)=cbar(ii)

e svecmu(index)=vecmuc(ii)
bt endif
D 100 continue
R
‘,‘r' c
¢ 'j c BUFFER THE COVARIANCE MATRIX OF SELECTED CONTROLS
ks ¢ AND RESPONSES
A c

- call vevtsf(subv,m2,subvf,n12)
i do 101 i=1,m2

s do 101 j=1,m2
3 o) buff1(i,j)=subv{(i,j)
ff'..g 101 continue

. c
::" c INVERT THE COVARIANCE SUBMATRIX OF CONTROLS
' c
s,
::u. call linv3f(subvf,b,1,iin,n12,d1,d2,wkarea,ier)
e if(ier.ne.0)print *,"IDIFD BELOW 101"
e
K
:”-
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BUFFER THE CROSS-COVARIANCE SUBMATRICES OF SELECTED CONTR:
WITH RESPONSES

do 102 i=iin+1,m2
do 102 j=1,iin
buff2(i-iin,j)=buff1(i,j
buff3(j,i-iin)=buff1(i,j
continue

BUFFER THE COVARIANCE SUBMATRIX OF RESPONSES

do 105 i=iin+1,m2

do 105 j=iin+1,m2
buff4(i-iin,j-iin =buﬁ‘1§i,j
buff6(i-iin,j-iin)=buff1(i,j
continue

FIND THE BETA HAT MATRIX ( CONTROL COEFFICIENTS )
OR THE GAMMA HAT MATRIX

if(iknow.eq.0) then
call vmulﬂ'(buﬂ?,subvf,ny2,iin,iin,ny2,n12,beta,ny2,ier)
else

call vmulff{(buff2,subvf,ny2,iin,iin,ny2,n12,beta,ny2,ier)
call vevtfs(covev,nx2,nx,symcovc)

call rlsubm(symecove,nx2,ih2,subcove,iorder)

call vevtsf(subcove,iorder,fulcove,nx2)

call linv3f(fulcove,b,1,iin,nx2,d1,d2,wkarea,ier)

call vmul (buﬁ?,fulcovc,ny2,iin,iin,ny2,nx2,gamma,ny2,ier)

endif

FIND THE VECTOR OF CORRECTIONS TO CONTROL Y BAR

do 103 i=1,iin
cdev1(1,i)=scbar(i)-svecmu(i)
cdev2(i,1)=cdev1(1,i)
continue

if(iknow.eq.0) then
call vmulff(beta,cdev2,ny2,iin,1,ny2,nx2,dev,ny2,ier)
else
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B
Y
:ﬁ: ‘ cal} vmul!ff(gamma,cdev2,ny2,iin,1,ny2,nx2,dev,ny2,ier)
Iy endif
by C
-.._:: c FIND THE CONTROLLED ESTIMATOR OF THE MEAN
:::_z do 104 i=1,ny2
o ybhat(i)=ybar(i)-dev(i,1)
oy 104 continue
J
i' :‘ .
N c FIND THE MATRIX OF EXPLAINED COVARIANCE DUE TO
ovs c CONTROL
o c
call vmulff(beta,buff3,ny2,iin,ny2,ny2,nx2,expl,ny2,ier)
Ny 7
o c
'.-‘3"4 c FIND THE RESIDUAL COVARIANCE
- \J c
* . cl1=(float(numreps-1)/foat(numreps-iin-1))
51 do 106 i=1,ny2
:.r: do 108 j=1,ny2
< sydotc(i,j)=(buff4(i,j)-expl(i,j))*cl
tj buff5(i,j) =sydote(i,j
. 108 continue
c
c FIND THE ESTIMATOR SIGMA TILDE HAT
c

if(iknow.eq.1) then

‘__ _.
o -
NG |

const1=(float(numreps-2))/(float(numreps*(numreps-1)))
const2=(float(iin+1))/(Hoat(numreps*(numreps-1)))
do 208 i=1,ny2

L do 206 j—1,ny2
roe, ehat(i,j)=/(const1*sydote(i,j))+{const2*buff4(i,j))
s buff9(i,j)=-ehat(i,j)
= 206 continue
" endif
[ ".:_\
OON c
E::: c FIND THE INVERSE RESIDUAL COVARIANCE MATRIX
o ¢
2 if(iknow.eq.0) then
o= call linv3f(sydote,b,1,ny2,ny2,d1,d2,wkarea,ier)
YN else
N call linv3f{ehat,b,1,ny2,ny2,d1,d2,wkarea,ier)
*-:: endif
[}
. c

Sty ‘Al*ﬂs,.-"‘ * % W
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Qf
R
: c COMPUTE THE DEVIATIONS FROM THE STEADY-STATE
A c RESPONSE VECTOR
¢ (both cases: controlled /uncontrolled)
M C
0o do 107 i=1,ny2
i ymd1(1,i)=ybhat(i)-vecmuy(i)
'f- ymd2 i,1 =ymd1_1,i) '
el ymd3(1,i)=ybar(i)-vecmuy(i)
3 ymd4(i,1)=ymd3(1,i)
' ! 107 continue
i
et ¢
-l - ¢ COMPUTE H'H
’j ¢ (Notation as per Venkatraman and Wilson 1986)
e c
w if(iknow.eq.0) then
. call vmulff{cdevl,subvf,1,iin,iin,1,n12,t1,1,ier)
,".r call vmulff(tl,cdev2,1,iin,1,1,0x2,hph,1,ier)
::.‘, endif
i if(iknow.eq.0) then
o x=(1./float(numreps))+(1./foat(numreps-1))*hph(1,1)
B ) else
N x=1.
8}
3 endif
) [
R c
. ¢ COMPUTE THE RIGHT HAND SIDE
ot c FOR THE CONFIDENCE REGION
- c AS PER RAO (1967)
e c
. c2=(float((numreps-iin-1)*ny2)/foat(numreps-iin-ny2))
W f—expi ﬂoat (ny2))*alog( (nn)))
) rhs=x
' .
s c COMPUTE THE T**2 STATISTIC
- ¢ FOR THE CASE WHERE CONTROLS ARE USED
" c (steady state assumed)
c
e, if(iknow.eq.0) then
0. call vmulff(ymd1,sydotec,1,ny2,ny2,1,ny2,t2,1,ier)
] z: call vmulff(t2,ymd2,1,ny2,1,1,ny2,0bs,1,ier)
D else
3 call vmulff(ymdl,ehat,1,ny2,ny2,1,ny2,t2,1,ier)
i call vmulff(t2,ymd2,1,ny2,1,1,ny2,0bs,1,ier)
endif
O c |
LK c INDICATE COVERAGE |
g ¢ FOR THE CASE WHERE CONTROLS ARE USED
& c (steady state assumed)

ey R, f ot > 200 A. 1. . w 13' 'v‘. » | W
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if(obs(l,l%.le.rhs) then

icover(1)=1
else

icover(1)=0
endif

COMPUTE THE VOLUME REDUCTION

if(iknow.eq.0) then

call linv3f(buff4,b,4,ny2,ny2,d1,d2,wkarea,ier)
ucdet=d1*2**d2

call linv3f(buff5,b,4,ny2,ny2,d1,d2,wkarea,ier)
cdet=d1*2**d2

else

call linv3f(buff4,b,4,ny2,ny?2,d1,d2,wkarea,ier)
ucdet=d1*2**d2

call linv3f(buff9,b,4,ny2,ny2,d1,d2,wkarea,ier)
cdet=d1*2**d2

endif

terml=/{(cdet /ucdet)**(.5)*x**(foat(ny2)/2.)
c3=float((numreps-iin-1) numreps) (numreps-ny2))
c4=float((numreps-iin-ny2)*(numreps-1))
term2={(c3/c4)**( ﬁoa.tiny2) 2)

f2—exp((1 /ﬂoat ny2))*alog(
term3=(f/f2)**(Hoat(ny2) 2

volred(1)=(1.-(terml term2*term3))*100

COMPUTE THE T**2 STATISTIC
FOR THE CASE WHERE no CONTROLS ARE USED

call linv3f(buff8,b,1,ny2,ny2,d1,d2,wkarea,ier)
call vinulff(ymd3,buff6,1,ny2,ny2,1,ny2,t2,1,ier)
call vmulff(t2,ymd4,1,ny2,1,1,ny2,0bs2,1,ier)

COMPUTE THE RIGHT HAND SIDE
FOR THE CONFIDENCE REGION

(ﬁoat%}numreps—l) ny 2)/ﬂoat8 numreps-ny2)*numreps))
rh32=exp 1./foat(ny2))*alog(ff(0)))*c

INDICATE COVERAGE
FOR THE CASE WHERE no CONTROLS ARE USED
(steady state assumed)

if(obs2(1,1).le.rhs2) then
icover(2)=1

else
icover(2)=0
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endif

THE REMAINING ANALYSIS DUPLICATES THE ABOVE SAVE THAT
THE GRAND MEAN OF 1000 RESPONSES IS USED

RECOMPUTE DEVIATIONS

GO 60060

do 108 i=1,ny2
ymd1(1,i)=ybhat(i)-vecybar(i)
ymd2(i,1)=ymd1(1,i)
ymd3(1,i)=ybar(i)-vecybar(i)
ymd4(i,1)=ymd3(1,i)
108 continue

COMPUTE THE T**2 STATISTIC
FOR THE CASE WHERE CONTROLS ARE USED
(Grand mean used)

o000 060

if(iknow.eq.0) then

call vmulff(ymd1,sydote,1,ny2,ny2,1,ny2,t2,1 ier)
call vmulff(t2,ymd2,1,ny2,1,1,ny2,0bs,1,ier)

else

call vmulff(ymd1,ehat,1,ny2,ny2,1,ny2,t2,1,ier)
call vmulff(t2,ymd2,1,ny2,1,1,ny2,0bs,1,ier)
endif

INDICATE COVERAGE
FOR THE CASE WHERE CONTROLS ARE USED

o000

if(obs(l,l%.le.rhs) then
icover(3)=1
else
icover(3)=0
endif

c COMPUTE THE T**2 STATISTIC
FOR THE CASE WHERE no CONTROLS ARE USED
c (Grand mean used)

(g}

o call vmulff(ymd3,buff6,1,ny2,ny2,1,ny2,t2,1,ier)
RS call vmulff(t2,ymd4,1,ny2,1,1,ny2,0bs2,1,ier)

INDICATE COVERAGE
FOR THE CASE WHERE no CONTROLS ARE USED

O 0060

if(obs2(1,1).le.rhs2) then
icover(4)=1

N else

icover(4)=0
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N . endif
>
el c THIS SECTION COMPUTES THE CANONICAL CORRELATIONS
. ¢ FOR THE SUBSET MODELS AND THE FEASIBILTY BOUND
) c FOR USING THE KNOW COVARIANCE MATRIX OF CONTROLS
K ¢
q % if(iknow.eq.1) then
-3, call vmulff(buff6,expl,ny2,ny2,ny2,ny2,ny2,cancorr,ny2,ny2,ier)
"’{ call eigrf(cancorr,ny2,ny2,0,eigs,dummy,ny2,wk,ier)
;'; > icount=0
o do 300 i=1,ny2
82 do 300 j=1,2
Kot icount=icount+1
o if(j.eq.1) reigs(i)=sqrt(eigs(icount))
300 continue
L
\ L]
‘v':.j ctop=float((numreps-+iin-1)*(numreps-iin-2))/
iz & float((numreps-1)*(numreps-2))
o cbot=ctop*(float(numreps-2) /float(numreps+iin-1))
». bound=sgqrt{(ctop-1.)/(cbot-1.))
® print *,"Canonical correlations ",reigs,” Bound ",bound
o print * eigs
- endif
9
A return
}-' end
‘ c
M c THIS SUBROUTINE RETURNS THE GENERALIZED VARIANCE
' c OF SIGMA TILDE HAT
-’. c
E:} subroutine covknow(rss,ny,full,nvar,target,dum,numreps,mv,det)

real rss(ny,ny),full(nvar,nvar),target(ny,ny),dum(ny)

)

e cl=(float(numreps-2)/float(numreps*(numreps-mv-1)))
, c2=(float(mv+1)/float(numreps*(numreps-1)))
Y nx=nvar-ny
e
! do 10 i=1,ny
L do 10 j=1,ny

target(i,j)=/{(c1*rss(i,j))+(c2*full(nx+i,nx+j))
10 continue

CARRRS

call linv3f(target,dum,4,ny,ny,d1,d2,wkarea,ier)
det=d1*2**d2

) return

- end
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